• Haskell语言学习笔记(56)Lens(3)


    手动计算(view, over, set, to, _1)

    view l = getConst . l Const
    
    over l f = runIdentity . l (Identity . f)
    
    set l b = runIdentity . l (\_ -> Identity b)
    
    to k = dimap k (contramap k)
    
    instance Field1 (a,b) (a',b) a a' where
      _1 k ~(a,b) = k a <&> a' -> (a',b)
    
    view _1 (1,2)
    = getConst . _1 Const $ (1,2)
    = getConst $ _1 Const (1,2)
    = getConst $ Const 1 <&> a' -> (a',2)
    = getConst $ Const 1
    = 1
    
    over _1 (+1) (1,2)
    = runIdentity . _1 (Identity . (+1)) $ (1,2)
    = runIdentity $ _1 (Identity . (+1)) (1,2)
    = runIdentity $ (Identity . (+1)) 1 <&> a' -> (a',2)
    = runIdentity $ Identity 2 <&> a' -> (a',2)
    = runIdentity $ Identity (2,2)
    = (2,2)
    
    set _1 3 (1,2)
    = runIdentity . _1 (\_ -> Identity 3) $ (1,2)
    = runIdentity $ _1 (\_ -> Identity 3) (1,2)
    = runIdentity $ (\_ -> Identity 3) 1 <&> a' -> (a',2)
    = runIdentity $ Identity 3 <&> a' -> (a',2)
    = runIdentity $ Identity (3,2)
    = (3,2)
    
    view (_1 . to abs) (-1,2)
    = getConst $ (_1 . to abs) Const (-1,2)
    = getConst $ _1 (to abs Const) (-1,2)
    = getConst $ (to abs Const) (-1) <&> a' -> (a',2)
    = getConst $ (dimap abs (contramap abs) (a -> Const a)) (-1) <&> a' -> (a',2)
    = getConst $ ((contramap abs) . (a -> Const a) . abs $ (-1)) <&> a' -> (a',2)
    = getConst $ ((contramap abs) . (a -> Const a) $ 1) <&> a' -> (a',2)
    = getConst $ ((contramap abs) $ Const 1) <&> a' -> (a',2)
    = getConst $ Const 1 <&> a' -> (a',2)
    = getConst $ Const 1
    = 1
    

    参考内容:

    Const a 是 Functor,也是 Contravariant

    newtype Const a b = Const { getConst :: a }
    
    instance Functor (Const m) where
        fmap _ (Const v) = Const v
    
    instance Contravariant (Const a) where
      contramap _ (Const a) = Const a
    

    (->) 是 Profunctor

    instance Profunctor (->) where
      dimap ab cd bc = cd . bc . ab
    

    Identity 是 Functor

    newtype Identity a = Identity { runIdentity :: a }
    
    instance Functor Identity where
        fmap f m = Identity (f (runIdentity m))
    

    手动计算 preview _Left (Left 5)

    Prelude Control.Lens> preview _Left (Left 5)
    Just 5
    
    _Left = prism Left $ either Right (Left . Right)
    
    prism bt seta = dimap seta (either pure (fmap bt)) . right'
    
    instance Choice (->) where
      right' = fmap
    
    preview l = getFirst . foldMapOf l (First . Just)
    
    foldMapOf l f = getConst . l (Const . f)
    
    instance Profunctor (->) where
      dimap ab cd bc = cd . bc . ab
    
    instance Functor (Const m) where
        fmap _ (Const v) = Const v
    
    preview _Left (Left 5)
    = getFirst . foldMapOf _Left (First . Just) $ Left 5
    = getFirst $ foldMapOf _Left (First . Just) $ Left 5
    = getFirst $ getConst . _Left (Const . (First . Just)) $ Left 5
    = getFirst $ getConst $ _Left (Const . (First . Just)) $ Left 5
    = getFirst $ getConst $ prism Left (either Right (Left . Right)) (Const . First . Just) (Left 5)
    = getFirst $ getConst $ (dimap (either Right (Left . Right)) (either pure (fmap Left)) . right') (Const . First . Just) (Left 5)
    = ①
    
    (dimap f g . h) x y
    = (dimap f g $ h x) y
    = g . (h x) . f $ y
    = g . (h x) $ f y
    
    ①
    = getFirst $ getConst $ (either pure (fmap Left)) . (right' (Const . First . Just)) $ (either Right (Left . Right)) (Left 5)
    = getFirst $ getConst $ (either pure (fmap Left)) . (right' (Const . First . Just)) $ (Right 5)
    = getFirst $ getConst $ (either pure (fmap Left)) $ right' (Const . First . Just) (Right 5)
    = getFirst $ getConst $ (either pure (fmap Left)) $ fmap (Const . First . Just) (Right 5)
    = getFirst $ getConst $ (either pure (fmap Left)) $ Right (Const . First $ Just 5)
    = getFirst $ getConst $ fmap Left (Const . First $ Just 5)
    = getFirst $ getConst $ fmap Left (Const . First $ Just 5)
    = getFirst $ getConst $ Const . First $ Just 5
    = Just 5
    

    手动计算 set mapped 5 [1,2,3]

    set l b = runIdentity . l (\_ -> Identity b)
    mapped = sets fmap
    sets f g = taintedDot (f (untaintedDot g))
    
    instance Settable Identity where
      untainted = runIdentity
      untaintedDot = (runIdentity #.)
      taintedDot = (Identity #.)
    
    set mapped 5 [1,2,3]
    = runIdentity . (sets fmap) (\_ -> Identity 5) $ [1,2,3]
    = runIdentity $ sets fmap (\_ -> Identity 5) $ [1,2,3]
    = runIdentity $ taintedDot (fmap (untaintedDot (\_ -> Identity 5))) $ [1,2,3]
    = runIdentity $ (Identity .) (fmap ((runIdentity .) (\_ -> Identity 5))) $ [1,2,3]
    = runIdentity $ (Identity .) (fmap (fmap runIdentity (\_ -> Identity 5))) $ [1,2,3]
    = runIdentity $ Identity . (fmap (\_ -> 5)) $ [1,2,3]
    = runIdentity $ Identity $ fmap (\_ -> 5) [1,2,3]
    = runIdentity $ Identity $ [5,5,5]
    = [5,5,5]
    

    手动计算 toListOf both (1,2)

    toListOf :: Getting (Endo [a]) s a -> s -> [a]
    toListOf l = foldrOf l (:) []
    
    foldrOf :: Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r
    foldrOf l f z = flip appEndo z . foldMapOf l (Endo #. f)
    
    foldMapOf :: Getting r s a -> (a -> r) -> s -> r
    foldMapOf l f = getConst #. l (Const #. f)
    
    both :: Bitraversable r => Traversal (r a a) (r b b) a b
    both f = bitraverse f f
    
    instance Bitraversable (,) where
      bitraverse f g ~(a, b) = (,) <$> f a <*> g b
    
    instance Functor (Const m) where
        fmap _ (Const v) = Const v
    
    instance Monoid m => Applicative (Const m) where
        pure _ = Const mempty
        liftA2 _ (Const x) (Const y) = Const (x `mappend` y)
        (<*>) = coerce (mappend :: m -> m -> m)
    
    toListOf both (1,2)
    = foldrOf both (:) [] (1,2)
    = flip appEndo [] . foldMapOf both (Endo #. (:)) $ (1,2)
    = flip appEndo [] . getConst #. both (Const #. (Endo #. (:))) $ (1,2)
    = flip appEndo [] . getConst #. bitraverse (Const #. (Endo #. (:))) (Const #. (Endo #. (:))) $ (1,2)
    = flip appEndo [] . getConst $ bitraverse (Const #. (Endo #. (:))) (Const #. (Endo #. (:))) (1,2)
    = flip appEndo [] . getConst $ (,) <$> (Const #. (Endo #. (:))) 1 <*> (Const #. (Endo #. (:))) 2
    = flip appEndo [] . getConst $ (,) <$> (Const . Endo . (:)) 1 <*> (Const . Endo . (:)) 2
    = flip appEndo [] . getConst $ (,) <$> (Const . Endo $ (:) 1) <*> (Const . Endo $ (:) 2)
    = flip appEndo [] . getConst $ (,) <$> (Const . Endo $ (1:)) <*> (Const . Endo $ (2:))
    = flip appEndo [] . getConst $ (,) <$> (Const (Endo (1:))) <*> (Const (Endo (2:)))
    = flip appEndo [] . getConst $ (Const (Endo (1:))) <*> (Const (Endo (2:)))
    = flip appEndo [] . getConst $ (Const (Endo (1:) <> Endo (2:)))
    = flip appEndo [] $ getConst (Const (Endo ((1:) . (2:))))
    = flip appEndo [] (Endo ((1:) . (2:)))
    = appEndo (Endo ((1:) . (2:))) []
    = [1,2]
    
  • 相关阅读:
    金牙与肉屑
    科学研究的动机以及雄心
    适度的自我吹嘘
    ubuntu12启用root账户
    有很多文件夹是受系统保护的
    vs2012换肤功能,vs2012主题及自定义主题
    Ubuntu navicat for mysql 安装和使用
    Asp.Net MVC4 Bundle捆绑压缩技术
    64位Windows Jmail组件报错解决方案
    C#检测上传文件的真实类型
  • 原文地址:https://www.cnblogs.com/zwvista/p/7990821.html
Copyright © 2020-2023  润新知