• 利用 Matplotlib 绘图


    各类绘图

    ## 导入包
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import seaborn as sns
    
    ## 参数设置
    #-------------------------01-------------------------
    large = 22; med = 16; small = 12
    params = {'axes.titlesize': large,
              'legend.fontsize': med,
              'figure.figsize': (16, 10),
              'axes.labelsize': med,
              'axes.titlesize': med,
              'xtick.labelsize': med,
              'ytick.labelsize': med,
              'figure.titlesize': large}
    plt.rcParams.update(params)
    plt.style.use('seaborn-whitegrid')
    sns.set_style("white")
    # 显示中文
    plt.rcParams['font.sans-serif']=['SimHei']
    plt.rcParams['axes.unicode_minus']=False
    
    ## box
    #-------------------------01-------------------------
    fig=plt.figure(figsize=(10,6), dpi= 80)
    ax1=fig.add_subplot(121)
    sns.boxplot(x=personal_df.minutes,ax=ax1)
    ax1.set_xlabel('个人客户')
    ax1.set_xlim(0,500)
    ax1.set_title('空调开启时长分布', fontsize=16, loc='center')
    ax1.legend()
    
    #-------------------------02-------------------------
    fig=plt.figure(figsize=(12,6), dpi= 80)
    ax2=fig.add_subplot(121) 
    sns.boxplot(x='company_type', y='minutes',data = company_df,ax=ax2)
    ax2.set_xlabel('公司客户')
    ax2.set_title('空调开启时长分布', fontsize=16, loc='center')
    ax2.legend()
    
    ## bar
    #-------------------------01-------------------------
    plt.figure(figsize=(10,6),dpi = 72)
    ax = sns.barplot(x=p_vehacfanspeed_times_mean_df.index.values, y=p_vehacfanspeed_times_mean_df.times_minutes.values, palette="rocket")
    ax.axhline(0, color="k", clip_on=False)
    ax.set_ylabel('平均时长/分钟')
    ax.set_xlabel('空调风速')
    # ax.set_axis_off()
    ax.set_title('个人用户', fontsize=24, loc="center", pad=10)
    # Annotate Text
    for i, cty in enumerate(p_vehacfanspeed_times_mean_df.times_minutes.values):
        ax.text(i, cty+0.5, round(cty, 1),fontsize=12, horizontalalignment='center')
    
    #-------------------------02-------------------------
    otal_width, n = 0.8, 2     # 有多少个类型,只需更改n即可
    width = total_width / n       # the width of the bars
    # x = x - (total_width - width) / 2
    
    fig, ax = plt.subplots(figsize=(10,8),dpi= 80)
    rects1 = ax.bar(company_out_freq_count_s.index.values+width, company_out_freq_count_s.values, width,label = '公司客户', color='r')
    rects2 = ax.bar(personal_out_freq_count_s.index.values, personal_out_freq_count_s.values, width,label = '个人客户', color='b')
    
    def autolabel(rects):
        # attach some text labels
        for rect in rects:
            height = rect.get_height()
            ax.text(rect.get_x() + rect.get_width()/2., 1.02*height,
                    '%d' % int(height),
                    ha='center', va='bottom')
    
    autolabel(rects1)
    autolabel(rects2)
    
    ax.set_ylabel('频数')
    ax.set_title('个人/公司车辆一天出行次数分布')
    plt.legend()
    
    ## distplot
    #-------------------------01-------------------------
    fig=plt.figure(figsize=(16,6), dpi= 80)
    
    ax1=fig.add_subplot(121) #1*2的图形 在第一个位置
    sns.distplot(company_out_df['delta_time_h'], color="dodgerblue", label="company_out", hist_kws={'alpha':.7}, kde_kws={'linewidth':3},ax=ax1)
    sns.distplot(personal_out_df['delta_time_h'], color="orange", label="personal_out", hist_kws={'alpha':.7}, kde_kws={'linewidth':3},ax=ax1)
    ax1.set_ylim(0,1)
    # Decoration
    ax1.set_xlabel("单次出行时长/h")
    ax1.set_title('单次出行时长密度分布', fontsize=22)
    ax1.legend()
    
    ## pie
    #-------------------------01-------------------------
    fig = plt.figure(figsize=(12, 8), dpi= 80)
    def func(pct, allvals):
        absolute = int(pct/100.*np.sum(allvals))
        return "{:.1f}% ({:d} )".format(pct, absolute)
    
    ax1=fig.add_subplot(221)
    personal_charge_data = [personal_fcharge_car_nums, personal_scharge_car_nums]
    categories = pd.Series(data = ['快充', '慢充'])
    explode = [0,0.1]
    wedges, texts, autotexts = ax1.pie(personal_charge_data, 
                                      autopct=lambda pct: func(pct, personal_charge_data),
                                      textprops=dict(color="w"), 
                                      colors=plt.cm.Dark2.colors,
                                     startangle=140,
                                     explode=explode)
    
    # ax1.legend(wedges, categories, title="充电类型", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1))
    ax1.set_title('个人充电类型占比')
    

    相关资源

    帮助文档:
    Matplotlib tutorial for beginner: https://github.com/rougier/matplotlib-tutorial
    图之典:http://tuzhidian.com/
    例子:
    effective data visualization
    Matplotlib 中文文档
    notebook_matplotlib_visualizations.ipynb
    top-50-matplotlib-visualizations-the-master-plots-python
    art_of_data_visualization: text pre-processing

    不要高估三年后的自己,更不要低估十年后的自己。
  • 相关阅读:
    MySQL-子查询,派生表,通用表达式
    MySQL-插入数据(INSERT)
    IDEA中如何使用debug调试项目 一步一步详细教程
    Java相对路径/绝对路径总结
    jsp九个内置对象、四个域对象及Servlet的三大域对象
    浅析MVC模式与三层架构的区别
    三层架构详解
    Java集合中List,Set以及Map等集合体系详解
    POJ3233 [C
    HDU 2829 [Lawrence] DP斜率优化
  • 原文地址:https://www.cnblogs.com/zwk-coder/p/11138736.html
Copyright © 2020-2023  润新知