• 《NEC Programming Contest 2021(AtCoder Beginner Contest 229)》


    A:签到

    // Author: levil
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int N = 1e6 + 5;
    const int M = 1e6 + 5;
    const LL Mod = 1e9 + 7;
    #define INF 1e9
    #define IN_INF 0x3f3f3f
    #define dbg(ax) cout << "now this num is " << ax << endl;
    
    void solve() { 
        string s1,s2;
        cin >> s1 >> s2;
        int cnt = 0,f1 = 0,f2 = 0;
        for(int i = 0;i < 2;++i) {
            if(i == 0) {
                if(s1[i] == '#') {
                    cnt++;
                    if(s1[1] != '#' && s2[0] != '#') f1 = 1;
                }
                if(s2[i] == '#') {
                    cnt++;
                    if(s2[1] != '#' && s2[0] != '#') f1 = 1;
                }
            }
            else {
                if(s1[i] == '#') {
                    cnt++;
                    if(s1[0] != '#' && s2[1] != '#') f1 = 1;
                }
                if(s2[i] == '#') {
                    cnt++;
                    if(s2[0] != '#' && s2[1] != '#') f1 = 1;
                }
            }
        }
        if(cnt <= 1) printf("Yes\n");
        else {
            printf("%s\n",f1 ? "No" : "Yes");
        }
    }   
    int main() {
        solve();
       // system("pause");
        return 0;
    }
    View Code

    B:签到

    // Author: levil
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int N = 1e6 + 5;
    const int M = 1e6 + 5;
    const LL Mod = 1e9 + 7;
    #define INF 1e9
    #define IN_INF 0x3f3f3f
    #define dbg(ax) cout << "now this num is " << ax << endl;
    
    void solve() { 
        string s1,s2;
        cin >> s1 >> s2;
        reverse(s1.begin(),s1.end());
        reverse(s2.begin(),s2.end());
        int mi = min(s1.size(),s2.size()),f = 0;
        for(int i = 0;i < mi;++i) {
            int ad = s1[i] - '0' + s2[i] - '0';
            if(ad >= 10) f = 1;
        }
        printf("%s\n",f ? "Hard" : "Easy");
    }   
    int main() {
        solve();
    //    system("pause");
        return 0;
    }
    View Code

    C:签到

    // Author: levil
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int N = 1e6 + 5;
    const int M = 1e6 + 5;
    const LL Mod = 1e9 + 7;
    #define INF 1e9
    #define IN_INF 0x3f3f3f
    #define dbg(ax) cout << "now this num is " << ax << endl;
    
    struct Node{int a,b;}p[M];
    bool cmp(Node a,Node b) {return a.a > b.a;}
    void solve() { 
        int n,w;scanf("%d %d",&n,&w);
        for(int i = 1;i <= n;++i) scanf("%d %d",&p[i].a,&p[i].b);
        sort(p + 1,p + n + 1,cmp);
        LL ans = 0;
        for(int i = 1;i <= n;++i) {
            if(w >= p[i].b) {
                ans += 1LL * p[i].b * p[i].a;
                w -= p[i].b;
            }
            else {
                ans += 1LL * w * p[i].a;
                break;
            }
        }
        printf("%lld\n",ans);
    }   
    int main() {
        solve();
      //  system("pause");
        return 0;
    }
    View Code

    D:可以发现这里左右移动都是差不多的。

    所以我们可以钦定一个左端点,然后去检查能得到的最大右端点。

    // Author: levil
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int N = 1e6 + 5;
    const int M = 1e6 + 5;
    const LL Mod = 1e9 + 7;
    #define INF 1e9
    #define IN_INF 0x3f3f3f
    #define dbg(ax) cout << "now this num is " << ax << endl;
    
    vector<int> vec;
    int d[N],val[N],cnt[N],mx[N];
    void solve() { 
        string s;
        int k;
        cin >> s >> k;
        int n = s.size();
        // int tot1 = 0,len2 = 0;
        // for(int i = 0;i < s.size();++i) {
        //     if((i == 0 || s[i - 1] == '.') && s[i] == 'X') {
        //         if(tot1 == 0) len2 = 0;
        //         d[++tot1] = len2;
        //         val[tot1] = 1;
        //         len2 = 0;
        //     }
        //     else if(s[i] == 'X') {
        //         val[tot1]++;
        //     }
        //     else ++len2;
        // }
        for(int i = 1;i <= n;++i) {
            cnt[i] = cnt[i - 1];
            if(s[i - 1] == '.') cnt[i]++;
            mx[cnt[i]] = i;
        }
        int ans = 0;
        for(int i = 1;i <= n;++i) {
            int r = cnt[i - 1] + k;
            int ss = cnt[n] - cnt[i - 1];
            if(k >= ss) ans = max(ans,n - i + 1);
            else {
                ans = max(ans,mx[r] - i + 1);
            }
          //  dbg(ans);
        }
        printf("%d\n",ans);
    
    }   
    int main() {
        solve();
        //system("pause");
        return 0;
    }
    View Code

    E:倒着并查集维护即可

    // Author: levil
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int N = 1e6 + 5;
    const int M = 1e6 + 5;
    const LL Mod = 1e9 + 7;
    #define INF 1e9
    #define IN_INF 0x3f3f3f
    #define dbg(ax) cout << "now this num is " << ax << endl;
    
    struct Node{int L,r;}p[M];
    int fa[N];
    int Find(int x) {return x == fa[x] ? x : fa[x] = Find(fa[x]);}
    vector<int> G[N],tmp;
    void solve() { 
        int n,m;scanf("%d %d",&n,&m);
        for(int i = 1;i <= m;++i) {
            scanf("%d %d",&p[i].L,&p[i].r);
            G[min(p[i].L,p[i].r)].push_back(max(p[i].L,p[i].r));
        }
        int ans = 0;
        for(int i = 1;i <= n;++i) fa[i] = i;
        for(int i = n;i >= 1;--i) {
            tmp.push_back(ans);
            for(auto v : G[i]) {
                int x = Find(v),y = Find(i);
                if(x != y) {
                    ans--;
                    fa[x] = y;
                }
            }
            ans++;
        }
        reverse(tmp.begin(),tmp.end());
        for(auto v : tmp) printf("%d\n",v);
    }   
    int main() {
        solve();
        //system("pause");
        return 0;
    }
    View Code

    F:题意没读懂,好像是个不太难的染色dp

    G:考虑对于每一个Y,令第i个Y的B[i]表示pos[i] - i.

    每次操作就等价于每次对B[i],+1或者-1

    那么对于一段连续的Y,如果要让他们连在一起,就是让一段B都相等。

    很显然这里可以得出B[i] - B[i -1] >= 0。也就表示B是一个递增序列。

    考虑一个序列{a1,a2,....an}要让所以的数到一个数的差值和的绝对值最小,显然那个目标数应该是中位数。

    那么这个总共需要的步数也就是$\sum_{i = L}^{r} |b[i] - mid|$

    所以我们可以枚举一个左端点,然后二分长度,中间的判断可以用前缀和优化(因为B肯定递增)。

    // Author: levil
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    typedef long double ld;
    typedef pair<int,int> pii;
    const int N = 2e5 + 5;
    const int M = 5e6 + 5;
    const LL Mod = 1e9 + 7;
    #define INF 1e9
    #define dbg(ax) cout << "now this num is " << ax << endl;
    inline long long ADD(long long x,long long y) {
        if(x + y < 0) return ((x + y) % Mod + Mod) % Mod;
        return (x + y) % Mod;
    }
    inline long long MUL(long long x,long long y) {
        if(x * y < 0) return ((x * y) % Mod + Mod) % Mod;
        return x * y % Mod;
    }
    inline long long DEC(long long x,long long y) {
        if(x - y < 0) return (x - y + Mod) % Mod;
        return (x - y) % Mod;
    }
    
    string s;
    LL k,pre[N];
    int b[N],n;
    bool check(int L,int len) {
        int r = L + len - 1;
        int mid = L + len / 2;
        LL ma = pre[r] - pre[mid] - 1LL * (r - mid) * b[mid];
        ma += 1LL * (mid - L) * b[mid] - (pre[mid - 1] - pre[L - 1]);
        if(ma <= k) return true;
        else return false;
    }
    void solve() {
        cin >> s >> k;  
        n = s.size();
        int tot = 0;
        for(int i = 1;i <= n;++i) {
            if(s[i - 1] == 'Y') {
                ++tot;
                b[tot] = i - tot;
            }
        }
        int ans = 0;
        for(int i = 1;i <= tot;++i) pre[i] = pre[i - 1] + b[i];
        for(int i = 1;i <= tot;++i) {
            int L = 1,r = tot - i + 1;
            while(L <= r) {
                int mid = (L + r) >> 1;
                if(check(i,mid)) {
                    ans = max(ans,mid);
                    L = mid + 1;   
                }
                else r = mid - 1;
            }
        }
        printf("%d\n",ans);
    }   
    int main() {
        //int _;
        //for(scanf("%d",&_);_;_--) 
            solve();
        system("pause");
        return 0;
    }
    View Code
  • 相关阅读:
    内存跟硬盘的区别
    MCU在电动滑板车硬件实物的设计技巧
    MCU微控制器在电动滑板车技术核心剖析
    ​FRAM技术简介
    FRAM作为代码存储器应用中的单芯片解决方案
    ​内存技术词汇表
    NV-SRAM与BBSRAM之间的比较
    非易失性存储器NV-SRAM的关键属性
    游戏机电池供电的SRAM解决方案
    个人学期期末总结和对王建民老师的评价
  • 原文地址:https://www.cnblogs.com/zwjzwj/p/15614588.html
Copyright © 2020-2023  润新知