A:贪心一下就行
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef long double ld; typedef pair<int,int> pii; const int N = 1e5 + 5; const int M = 1e6 + 5; const LL Mod = 998244353; #define INF 1e9 #define dbg(ax) cout << "now this num is " << ax << endl; inline long long ADD(long long x,long long y) { if(x + y < 0) return ((x + y) % Mod + Mod) % Mod; return (x + y) % Mod; } inline long long MUL(long long x,long long y) { if(x * y < 0) return ((x * y) % Mod + Mod) % Mod; return x * y % Mod; } inline long long DEC(long long x,long long y) { if(x - y < 0) return (x - y + Mod) % Mod; return (x - y) % Mod; } int a[105]; void solve() { int n,L,r,k;scanf("%d %d %d %d",&n,&L,&r,&k); for(int i = 1;i <= n;++i) scanf("%d",&a[i]); sort(a + 1,a + n + 1); int ans = 0; for(int i = 1;i <= n;++i) { if(a[i] >= L && a[i] <= r && k >= a[i]) ans++,k -= a[i]; } printf("%d\n",ans); } int main() { int ca;scanf("%d",&ca); while(ca--) { solve(); } // system("pause"); return 0; }
B:也是贪心
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef long double ld; typedef pair<int,int> pii; const int N = 2e5 + 5; const int M = 1e6 + 5; const LL Mod = 998244353; #define INF 1e9 #define dbg(ax) cout << "now this num is " << ax << endl; inline long long ADD(long long x,long long y) { if(x + y < 0) return ((x + y) % Mod + Mod) % Mod; return (x + y) % Mod; } inline long long MUL(long long x,long long y) { if(x * y < 0) return ((x * y) % Mod + Mod) % Mod; return x * y % Mod; } inline long long DEC(long long x,long long y) { if(x - y < 0) return (x - y + Mod) % Mod; return (x - y) % Mod; } int a[N],pos[N]; struct Node{int id,x;}p[N]; bool cmp(Node a,Node b) {return a.x < b.x;} void solve() { int n;scanf("%d",&n); for(int i = 1;i <= n;++i) scanf("%d",&p[i].x),p[i].id = i; sort(p + 1,p + n + 1,cmp); int L = -1,r = 1; pos[0] = 0; LL sum = 0; for(int i = n;i >= 1;--i) { if(abs(L) <= r) pos[p[i].id] = L,sum += 2LL * p[i].x * abs(L),--L; else pos[p[i].id] = r,sum += 2LL * p[i].x * r,r++; } printf("%lld\n",sum); for(int i = 0;i <= n;++i) printf("%d%c",pos[i],i == n ? '\n' : ' '); } int main() { int ca;scanf("%d",&ca); while(ca--) { solve(); } //system("pause"); return 0; }
C:这题的话其实和构造出来的数组没太大关系,甚至不需要构造就可以算。
这里离线随便构造了一个数组,然后dp计了一下异或和。
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef long double ld; typedef pair<int,int> pii; const int N = 2e5 + 5; const int M = 1e6 + 5; const LL Mod = 1e9 + 7; #define INF 1e9 #define dbg(ax) cout << "now this num is " << ax << endl; inline long long ADD(long long x,long long y) { if(x + y < 0) return ((x + y) % Mod + Mod) % Mod; return (x + y) % Mod; } inline long long MUL(long long x,long long y) { if(x * y < 0) return ((x * y) % Mod + Mod) % Mod; return x * y % Mod; } inline long long DEC(long long x,long long y) { if(x - y < 0) return (x - y + Mod) % Mod; return (x - y) % Mod; } struct Node{int L,r,w;}p[N]; vector<pii> vec[N]; int val[N],bit[30],r[30]; LL dp[N][30][2]; void solve() { int n,m;scanf("%d %d",&n,&m); for(int i = 1;i <= n;++i) { vec[i].clear(),val[i] = 0; for(int j = 0;j < 30;++j) for(int k = 0;k < 2;++k) dp[i][j][k] = 0; } for(int i = 0;i < 30;++i) r[i] = 0; for(int i = 1;i <= m;++i) { scanf("%d %d %d",&p[i].L,&p[i].r,&p[i].w); vec[p[i].L].push_back(pii{p[i].r,p[i].w}); } for(int i = 1;i <= n;++i) { if(vec[i].size() == 0) { for(int j = 0;j < 30;++j) { if(r[j] != 0) val[i] |= (1 << j),r[j] = 0; } } else { for(int j = 0;j < 30;++j) bit[j] = 1; for(auto v : vec[i]) { for(int j = 0;j < 30;++j) { int g = (v.second >> j) & 1; if(g == 0) bit[j] = 0; } } for(int j = 0;j < 30;++j) { if(bit[j] == 1) { val[i] |= (1 << j); r[j] = 0; } } for(auto v : vec[i]) { for(int j = 0;j < 30;++j) { int g = (v.second >> j) & 1; if(g == 1 && bit[j] == 0) { if(r[j] == 0) r[j] = v.first; else r[j] = min(r[j],v.first); } } } } } //for(int i = 1;i <= n;++i) printf("v %d\n",val[i]); LL ans = 0; for(int i = 1;i <= n;++i) { for(int j = 0;j < 30;++j) { int g = (val[i] >> j) & 1; dp[i][j][g] = ADD(dp[i][j][g],1); for(int k = 0;k < 2;++k) { dp[i][j][k ^ g] = ADD(dp[i][j][k ^ g],dp[i - 1][j][k]); } ans = ADD(ans,(1LL << j) * dp[i][j][1] % Mod); for(int k = 0;k < 2;++k) dp[i][j][k] = ADD(dp[i][j][k],dp[i - 1][j][k]); } } printf("%lld\n",ans); } int main() { int ca;scanf("%d",&ca); while(ca--) { solve(); } // system("pause"); return 0; }
D1:这里预处理的时候塞了个vector,就被卡常数了。
cnt[i] - 表示i的倍数的个数。
那么就有dp[j] = max(dp[j],dp[i] + cnt[j] * (j - i))
就是说一开始所有i的倍数都当成gcd = i的代价来算,这时候序列尾有cnt[j]个抬升到gcd = j,那么对于单个抬升增加的代价就是(j - i)。
很显然j的倍数也就是i的倍数。复杂度nlogn
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; const int N = 1e6 + 5; const int M = 5e6 + 5; const LL Mod = 1e9 + 7; #define INF 1e9 #define IN_INF 0x3f3f3f #define dbg(ax) cout << "now this num is " << ax << endl; int a[N],cnt[M];//cnt[i] - i的倍数 LL dp[M];//当前gcd = i的最大值 void solve() { int n;scanf("%d",&n); for(int i = 1;i <= n;++i) scanf("%d",&a[i]),cnt[a[i]]++; for(int i = 1;i < M;++i) for(int j = i + i;j < M;j += i) cnt[i] += cnt[j]; for(int i = 1;i < M;++i) dp[i] = 1LL * cnt[i] * i; LL ans = 0; for(int i = 1;i < M;++i) { for(int j = i + i;j < M;j += i) { dp[j] = max(dp[j],dp[i] + 1LL * cnt[j] * (j - i)); } ans = max(ans,dp[i]); } printf("%lld\n",ans); } int main() { solve(); // system("pause"); return 0; }
D2:只有a的范围增大了。
我们考虑对D1的代码进行优化。
对于cnt计数部分,我们用狄利克雷后缀和优化一下即可。
对于后序的dp计数,很显然有结论dp[j] >= dp[i] {i | j},那么对于中间还可以增加倍数的情况,显然不是最优转移。
所以我们每次只需要转移一个素数倍即可。复杂度就压到了nloglogn
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; const int N = 1e6 + 5; const int M = 2e7 + 5; const LL Mod = 1e9 + 7; #define INF 1e9 #define IN_INF 0x3f3f3f #define dbg(ax) cout << "now this num is " << ax << endl; int a[N],cnt[M];//cnt[i] - i的倍数 LL dp[M];//当前gcd = i的最大值 bool vis[M]; int prime[M],tot = 0; void init() { for(int i = 2;i < M;++i) { if(!vis[i]) prime[++tot] = i; for(int j = 1;j <= tot && prime[j] * i < M;++j) { vis[prime[j] * i] = 1; if(i % prime[j] == 0) continue; } } } void solve() { init(); int n;scanf("%d",&n); for(int i = 1;i <= n;++i) scanf("%d",&a[i]),cnt[a[i]]++; for(int i = 1;i <= tot && prime[i] < M;++i) { for(int j = (M - 1) / prime[i];j;--j) { cnt[j] += cnt[j * prime[i]]; } } for(int i = 1;i < M;++i) dp[i] = 1LL * cnt[i] * i; LL ans = 0; for(int i = 1;i < M;++i) { for(int j = 1;j <= tot && prime[j] * i < M;++j) { dp[prime[j] * i] = max(dp[prime[j] * i],dp[i] + 1LL * cnt[prime[j] * i] * (prime[j] * i - i)); } ans = max(ans,dp[i]); } printf("%lld\n",ans); } int main() { solve(); // system("pause"); return 0; }
E:这题题意有点奇奇怪怪,解法好像是动态开点的线段树。