• 《Codeforces Round #757 (Div. 2)》


    A:贪心一下就行

    // Author: levil
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    typedef long double ld;
    typedef pair<int,int> pii;
    const int N = 1e5 + 5;
    const int M = 1e6 + 5;
    const LL Mod = 998244353;
    #define INF 1e9
    #define dbg(ax) cout << "now this num is " << ax << endl;
    inline long long ADD(long long x,long long y) {
        if(x + y < 0) return ((x + y) % Mod + Mod) % Mod;
        return (x + y) % Mod;
    }
    inline long long MUL(long long x,long long y) {
        if(x * y < 0) return ((x * y) % Mod + Mod) % Mod;
        return x * y % Mod;
    }
    inline long long DEC(long long x,long long y) {
        if(x - y < 0) return (x - y + Mod) % Mod;
        return (x - y) % Mod;
    }
    
    int a[105];
    void solve() {
        int n,L,r,k;scanf("%d %d %d %d",&n,&L,&r,&k);
        for(int i = 1;i <= n;++i) scanf("%d",&a[i]);
        sort(a + 1,a + n + 1);
        int ans = 0;
        for(int i = 1;i <= n;++i) {
            if(a[i] >= L && a[i] <= r && k >= a[i]) ans++,k -= a[i];
        }
        printf("%d\n",ans);
    
    }   
    int main() {
        int ca;scanf("%d",&ca);
        while(ca--) {
            solve();
        }
       // system("pause");
        return 0;
    }
    View Code

    B:也是贪心

    // Author: levil
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    typedef long double ld;
    typedef pair<int,int> pii;
    const int N = 2e5 + 5;
    const int M = 1e6 + 5;
    const LL Mod = 998244353;
    #define INF 1e9
    #define dbg(ax) cout << "now this num is " << ax << endl;
    inline long long ADD(long long x,long long y) {
        if(x + y < 0) return ((x + y) % Mod + Mod) % Mod;
        return (x + y) % Mod;
    }
    inline long long MUL(long long x,long long y) {
        if(x * y < 0) return ((x * y) % Mod + Mod) % Mod;
        return x * y % Mod;
    }
    inline long long DEC(long long x,long long y) {
        if(x - y < 0) return (x - y + Mod) % Mod;
        return (x - y) % Mod;
    }
    
    int a[N],pos[N];
    struct Node{int id,x;}p[N];
    bool cmp(Node a,Node b) {return a.x < b.x;}
    void solve() {
        int n;scanf("%d",&n);
        for(int i = 1;i <= n;++i) scanf("%d",&p[i].x),p[i].id = i;
        sort(p + 1,p + n + 1,cmp);
        int L = -1,r = 1;
        pos[0] = 0;
        LL sum = 0;
        for(int i = n;i >= 1;--i) {
            if(abs(L) <= r) pos[p[i].id] = L,sum += 2LL * p[i].x * abs(L),--L;
            else pos[p[i].id] = r,sum += 2LL * p[i].x * r,r++;
        }
        printf("%lld\n",sum);
        for(int i = 0;i <= n;++i) printf("%d%c",pos[i],i == n ? '\n' : ' ');
    
    }   
    int main() {
        int ca;scanf("%d",&ca);
        while(ca--) {
            solve();
        }
        //system("pause");
        return 0;
    }
    View Code

    C:这题的话其实和构造出来的数组没太大关系,甚至不需要构造就可以算。

    这里离线随便构造了一个数组,然后dp计了一下异或和。

    // Author: levil
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    typedef long double ld;
    typedef pair<int,int> pii;
    const int N = 2e5 + 5;
    const int M = 1e6 + 5;
    const LL Mod = 1e9 + 7;
    #define INF 1e9
    #define dbg(ax) cout << "now this num is " << ax << endl;
    inline long long ADD(long long x,long long y) {
        if(x + y < 0) return ((x + y) % Mod + Mod) % Mod;
        return (x + y) % Mod;
    }
    inline long long MUL(long long x,long long y) {
        if(x * y < 0) return ((x * y) % Mod + Mod) % Mod;
        return x * y % Mod;
    }
    inline long long DEC(long long x,long long y) {
        if(x - y < 0) return (x - y + Mod) % Mod;
        return (x - y) % Mod;
    }
    
    struct Node{int L,r,w;}p[N];
    vector<pii> vec[N];
    int val[N],bit[30],r[30];
    LL dp[N][30][2];
    void solve() {
        int n,m;scanf("%d %d",&n,&m);
        for(int i = 1;i <= n;++i) {
            vec[i].clear(),val[i] = 0;
            for(int j = 0;j < 30;++j)
                for(int k = 0;k < 2;++k) dp[i][j][k] = 0;
        }
        for(int i = 0;i < 30;++i) r[i] = 0;
        for(int i = 1;i <= m;++i) {
            scanf("%d %d %d",&p[i].L,&p[i].r,&p[i].w);
            vec[p[i].L].push_back(pii{p[i].r,p[i].w});
        }
        for(int i = 1;i <= n;++i) {
            if(vec[i].size() == 0) {
                for(int j = 0;j < 30;++j) {
                    if(r[j] != 0) val[i] |= (1 << j),r[j] = 0;
                }
            }   
            else {
                for(int j = 0;j < 30;++j) bit[j] = 1;
                for(auto v : vec[i]) {
                    for(int j = 0;j < 30;++j) {
                        int g = (v.second >> j) & 1;
                        if(g == 0) bit[j] = 0;
                    }
                }
                for(int j = 0;j < 30;++j) {
                    if(bit[j] == 1) {
                        val[i] |= (1 << j); 
                        r[j] = 0;
                    }
                }
                for(auto v : vec[i]) {
                    for(int j = 0;j < 30;++j) {
                        int g = (v.second >> j) & 1;
                        if(g == 1 && bit[j] == 0) {
                            if(r[j] == 0) r[j] = v.first;
                            else r[j] = min(r[j],v.first);
                        }
                    }
                }
            }
        }
        //for(int i = 1;i <= n;++i) printf("v %d\n",val[i]);
        LL ans = 0;
        for(int i = 1;i <= n;++i) {
            for(int j = 0;j < 30;++j) {
                int g = (val[i] >> j) & 1;
                dp[i][j][g] = ADD(dp[i][j][g],1); 
                for(int k = 0;k < 2;++k) {
                    dp[i][j][k ^ g] = ADD(dp[i][j][k ^ g],dp[i - 1][j][k]); 
                }
                ans = ADD(ans,(1LL << j) * dp[i][j][1] % Mod);
                for(int k = 0;k < 2;++k) dp[i][j][k] = ADD(dp[i][j][k],dp[i - 1][j][k]);
            }
        }
        printf("%lld\n",ans);
    
    }   
    int main() {
        int ca;scanf("%d",&ca);
        while(ca--) {
            solve();
        }
      //  system("pause");
        return 0;
    }
    View Code

    D1:这里预处理的时候塞了个vector,就被卡常数了。

    cnt[i] - 表示i的倍数的个数。

    那么就有dp[j]  = max(dp[j],dp[i] + cnt[j] * (j - i))

    就是说一开始所有i的倍数都当成gcd = i的代价来算,这时候序列尾有cnt[j]个抬升到gcd = j,那么对于单个抬升增加的代价就是(j - i)。

    很显然j的倍数也就是i的倍数。复杂度nlogn

    // Author: levil
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int N = 1e6 + 5;
    const int M = 5e6 + 5;
    const LL Mod = 1e9 + 7;
    #define INF 1e9
    #define IN_INF 0x3f3f3f
    #define dbg(ax) cout << "now this num is " << ax << endl;
    
    int a[N],cnt[M];//cnt[i] - i的倍数
    LL dp[M];//当前gcd = i的最大值
    void solve() { 
        int n;scanf("%d",&n);    
        for(int i = 1;i <= n;++i) scanf("%d",&a[i]),cnt[a[i]]++;
        for(int i = 1;i < M;++i) 
            for(int j = i + i;j < M;j += i) cnt[i] += cnt[j];
        for(int i = 1;i < M;++i) dp[i] = 1LL * cnt[i] * i;
        LL ans = 0;
        for(int i = 1;i < M;++i) {
            for(int j = i + i;j < M;j += i) {
                dp[j] = max(dp[j],dp[i] + 1LL * cnt[j] * (j - i));
            }
            ans = max(ans,dp[i]);
        }
        printf("%lld\n",ans);
    }   
    int main() {
        solve();
       // system("pause");
        return 0;
    }
    View Code

    D2:只有a的范围增大了。

    我们考虑对D1的代码进行优化。

    对于cnt计数部分,我们用狄利克雷后缀和优化一下即可。

    对于后序的dp计数,很显然有结论dp[j] >= dp[i] {i | j},那么对于中间还可以增加倍数的情况,显然不是最优转移。

    所以我们每次只需要转移一个素数倍即可。复杂度就压到了nloglogn

    // Author: levil
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int N = 1e6 + 5;
    const int M = 2e7 + 5;
    const LL Mod = 1e9 + 7;
    #define INF 1e9
    #define IN_INF 0x3f3f3f
    #define dbg(ax) cout << "now this num is " << ax << endl;
    
    int a[N],cnt[M];//cnt[i] - i的倍数
    LL dp[M];//当前gcd = i的最大值
    bool vis[M];
    int prime[M],tot = 0;
    void init() {
        for(int i = 2;i < M;++i) {
            if(!vis[i]) prime[++tot] = i;
            for(int j = 1;j <= tot && prime[j] * i < M;++j) {
                vis[prime[j] * i] = 1;
                if(i % prime[j] == 0) continue;
            }
        }
    }
    void solve() { 
        init();
        int n;scanf("%d",&n);    
        for(int i = 1;i <= n;++i) scanf("%d",&a[i]),cnt[a[i]]++;
         for(int i = 1;i <= tot && prime[i] < M;++i) {
            for(int j = (M - 1) / prime[i];j;--j) {
                cnt[j] += cnt[j * prime[i]];
            }
        }
        for(int i = 1;i < M;++i) dp[i] = 1LL * cnt[i] * i;
        LL ans = 0;
        for(int i = 1;i < M;++i) {
            for(int j = 1;j <= tot && prime[j] * i < M;++j) {
                dp[prime[j] * i] = max(dp[prime[j] * i],dp[i] + 1LL * cnt[prime[j] * i] * (prime[j] * i - i));
            }
            ans = max(ans,dp[i]);
        }
        printf("%lld\n",ans);
    }   
    int main() {
        solve();
       // system("pause");
        return 0;
    }
    View Code

    E:这题题意有点奇奇怪怪,解法好像是动态开点的线段树。

  • 相关阅读:
    取某个关键词以及之后的数据
    从SQL下载大量数据到Excel
    SQL 分页
    whereis linux文件搜索
    crontab Linux定时器工具
    Angular
    工具
    百度OAuth2.0登录
    JS事件学习 拖拽,鼠标键盘事件实例汇总
    信息栏滚动效果学习总结
  • 原文地址:https://www.cnblogs.com/zwjzwj/p/15614456.html
Copyright © 2020-2023  润新知