• 《2018 Multi-University Training Contest 9》


    这场感觉难了不少。

    Rikka with Nash Equilibrium:

    一开始打了个表,发现最大值放在每个位置的贡献都一样。

    然后就傻傻地找每个位置的组合数规律。。

    结果是DP。这真没想到。

    首先,很明显,那个纳什平衡数就是n * m。

    那么我们从大到小填充矩阵,如果当前用了k个数组成了i,j个那么下一个数肯定要放在这i行或者j列中。

    所以dp[k][i][j] 表示放置了k个数,覆盖了i行,j列。

    从三个方向转移。

    1:没有行列增加,如果之前放置了k - 1个数覆盖了i行j列,那么剩下还有i * j - (k - 1)个位置可以放置。

    2:增加了一行,有n - (i -1) * j个位置可以放置。

    3:增加了一列,有m - (j-1) * i个位置可以放置。

    // Author: levil
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    typedef pair<LL,int> pii;
    const int N = 1e5 + 5;
    const int M = 1e5 + 5;
    const LL Mod = 199999;
    #define pi acos(-1)
    #define INF 1e9
    #define dbg(ax) cout << "now this num is " << ax << endl;
    namespace FASTIO{
        inline int read(){
            int x = 0,f = 1;char c = getchar();
            while(c < '0' || c > '9'){if(c == '-') f = -1;c = getchar();}
            while(c >= '0' && c <= '9'){x = (x<<1)+(x<<3)+(c^48);c = getchar();}
            return x*f;
        }
    }
    using namespace FASTIO;
    
    LL dp[80 * 80 + 5][85][85];//放置k个点,且已经放置了i行,j列的方案数
    int main() {
        int ca;ca = read();
        while(ca--) {
            memset(dp,0,sizeof(dp));
            int n,m,mod;n = read(),m = read(),mod = read();
            dp[1][1][1] = n * m;
            for(int k = 2;k <= n * m;++k) {
                for(int i = 1;i <= n;++i) {
                    for(int j = 1;j <= m;++j) {
                        if(i * j - k + 1 < 0) continue;
                        int ma1 = dp[k - 1][i][j] * (i * j - k + 1);
                        int ma2 = dp[k - 1][i - 1][j] * (n - i + 1) * j;
                        int ma3 = dp[k - 1][i][j - 1] * (m - j + 1) * i;
                        dp[k][i][j] = (dp[k][i][j] + dp[k - 1][i][j] * (i * j - k + 1)) % mod;        
                        if(i > 0) dp[k][i][j] = (dp[k][i][j] + dp[k - 1][i - 1][j] * (n - i + 1) * j) % mod;
                        if(j > 0) dp[k][i][j] = (dp[k][i][j] + dp[k - 1][i][j - 1] * (m - j + 1) * i) % mod;
                    }
                }
            }
            printf("%lld
    ",dp[n * m][n][m]);
        }
       // system("pause");
        return 0;
    }
    View Code

    Rikka with Badminton:

    这题题意描述真的很模糊啊。

    一开始题意是参加的所有人都能打上球。。

    这里的题意是选出的人里能拿出最少两个拍子,一个球来打。只需要组成一组就行了。

    首先我们考虑容斥,算可以的方案数就行。

    我们分类讨论:首先什么的a不用管了。没影响。

    若c = 0:

      d = 0:都不行。

      d = 1:需要b != 0

      d > 1:都行。

    若c != 0:

      b = 0:需要d > 1

      b = 1:需要d != 0

      b > 1:都行。

    // Author: levil
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    typedef pair<LL,int> pii;
    const int N = 1e5 + 5;
    const int M = 1e5 + 5;
    const LL Mod = 998244353;
    #define pi acos(-1)
    #define INF 1e9
    #define dbg(ax) cout << "now this num is " << ax << endl;
    namespace FASTIO{
        inline int read(){
            int x = 0,f = 1;char c = getchar();
            while(c < '0' || c > '9'){if(c == '-') f = -1;c = getchar();}
            while(c >= '0' && c <= '9'){x = (x<<1)+(x<<3)+(c^48);c = getchar();}
            return x*f;
        }
    }
    using namespace FASTIO;
    
    LL quick_mi(LL a,LL b) {
        LL re = 1;
        while(b) {
            if(b & 1) re = re * a % Mod;
            a = a * a % Mod;
            b >>= 1;
        }
        return re;
    }
    LL mul(LL a,LL b) {
        return a * b % Mod;
    }
    LL add(LL a,LL b) {
        return (a + b) % Mod;
    }
    int main() {
        int ca;ca = read();
        while(ca--) {
            int a,b,c,d;
            a = read(),b = read(),c = read(),d = read();
            LL n = a + b + c + d;
            LL sum = quick_mi(2,n);
            LL ma1 = (quick_mi(2,b) - 1 - b + Mod) % Mod;;//b > 1
            LL ma2 = (quick_mi(2,c) - 1) * ma1 % Mod * quick_mi(2,a + d);//c != 0,b > 1
            LL ma3 = ((quick_mi(2,c) - 1) * b % Mod * (quick_mi(2,d) - 1) % Mod * quick_mi(2,a) % Mod + Mod) % Mod;//c != 0,b = 1,d != 0
            LL ma4 = (quick_mi(2,d) - 1 - d + Mod) % Mod;//d > 1
            LL ma5 = ((quick_mi(2,c) - 1) * ma4 % Mod * quick_mi(2,a) % Mod + Mod) % Mod;//c != 0,b == 0,d > 1
            LL ans = ((ma2 + ma3) % Mod + ma5) % Mod;
            LL tmp1 = ma4 * quick_mi(2,a + b) % Mod;//c = 0,d > 1
            LL tmp2 = (d * (quick_mi(2,b) - 1) % Mod * quick_mi(2,a) % Mod + Mod) % Mod;//c = 0,d = 1,b != 0
            ans = ((ans + tmp1) % Mod + tmp2) % Mod;
            ans = (sum - ans + Mod) % Mod;
            printf("%lld
    ",ans);
        }   
    
       // system("pause");
        return 0;
    }
    View Code

    Rikka with Stone-Paper-Scissors:

    对于胜利的期望情况,就会存在失败。

    也就是说我们当前选择了用这种状态胜利,就会导致其他状态的失败。

    那么对于选择一种状态的期望就是 用这种状态胜利的期望 - 用这种状态失败的期望。

    例如win(a) = a * c' / (a + b + c) - a * b' / (a + b + c)

    这里还需要注意一点,gcd的值可能是负数。

    这样我们做除法会导致符号变换。所以要对gcd取绝对值。

    // Author: levil
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    typedef pair<LL,int> pii;
    const int N = 1e5 + 5;
    const int M = 1e5 + 5;
    const LL Mod = 998244353;
    #define pi acos(-1)
    #define INF 1e9
    #define dbg(ax) cout << "now this num is " << ax << endl;
    namespace FASTIO{
        inline LL read(){
            LL x = 0,f = 1;char c = getchar();
            while(c < '0' || c > '9'){if(c == '-') f = -1;c = getchar();}
            while(c >= '0' && c <= '9'){x = (x<<1)+(x<<3)+(c^48);c = getchar();}
            return x*f;
        }
    }
    using namespace FASTIO;
    
    int main() {
        int ca;ca = read();
        while(ca--) {
            LL aa,bb,cc;aa = read(),bb = read(),cc = read();
            LL a,b,c;a = read(),b = read(),c = read();
            LL sum = a + b + c;
            LL ma1 = a * (cc - bb);
            LL ma2 = b * (aa - cc);
            LL ma3 = c * (bb - aa);
            LL ma = ma1 + ma2 + ma3;
            LL g = __gcd(ma,sum);
            g = abs(g);
            sum /= g,ma /= g;
            if(ma % sum == 0) printf("%lld
    ",ma / sum);
            else printf("%lld/%lld
    ",ma,sum); 
        }   
    
        //system("pause");
        return 0;
    }
    View Code
  • 相关阅读:
    MSMQ, WCF and IIS: Getting them to play nice (Part 2)[转]
    c#通用函数[转]
    MSMQ, WCF and IIS: Getting them to play nice (Part 1)[转]
    Building a Pub/Sub Message Bus with Wcf,Msmq,IIS
    关于virtual,new,override用法详解
    wcf服务代理层添加wcf服务异步代理
    HttpModule教程
    创造和把握职位升迁的10条规则
    wcf服务代理层添加wcf服务异步代理
    windows server 2008下IIS设置问题
  • 原文地址:https://www.cnblogs.com/zwjzwj/p/14787219.html
Copyright © 2020-2023  润新知