• BZOJ3083: 遥远的国度(树链剖分)


    题意

    $n$个节点的树,每个点有权值,支持三种操作

    1、 换根

    2、把$x$到$y$路径上节点权值变为$z$

    3、询问路径最小值

    Sol

    啥?你说这是TopTree的裸题?那你写去啊

    很显然,如果没有第一个操作就是树剖的裸题

    其实有了第一个操作也是树剖的裸题

    我们考虑换根之后会对那些节点产生影响

    以下图片来自(https://blog.csdn.net/lcomyn/article/details/45718295)

    第一种情况:x == root

    很显然直接查询子树的最小值就行

    第二种情况:$lca(x,root) != x$

    这种情况也简单,直接查询$x$子树中的最小值即可

    第三种情况:$lca(x,root) = x$

    这种情况稍微复杂一些

    我们需要找到$root$往上走,离$x$最近的点。

    很显然,这个点以上的部分,就是我们要查询的区间

    那么我们查询这个点的子树对应区间的补集即可

    #include<cstdio>
    #include<vector>
    #include<algorithm>
    using namespace std;
    const int MAXN = 1e5 + 10, B = 20, INF = 2147483646;
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, M, root = 1;
    int a[MAXN], b[MAXN];
    vector<int> v[MAXN];
    int fa[MAXN], top[MAXN], jump[MAXN][21], deep[MAXN], siz[MAXN], l[MAXN], r[MAXN], tot = 0, cnt, son[MAXN], ID[MAXN];
    void dfs1(int x, int _fa) {
        fa[x] = _fa; siz[x] = 1; l[x] = ++cnt; 
        jump[x][0] = fa[x];
        for(int i = 0; i < v[x].size(); i++) {
            int to = v[x][i];
            if(deep[to]) continue;
            deep[to] = deep[x] + 1;
            dfs1(to, x);
            siz[x] += siz[to];
            if(siz[to] > siz[son[x]]) son[x] = to;
        }
        r[x] = cnt;
    }
    void dfs2(int x, int topf) {
        top[x] = topf; ID[x] = ++tot; a[tot] = b[x];
        l[x] = tot;
        if(!son[x]) {r[x] = tot; return ;}
        dfs2(son[x], topf);
        for(int i = 0; i < v[x].size(); i++) {
            int to = v[x][i];
            if(top[to]) continue;
            dfs2(to, to);
        }
        r[x] = tot;
    }
    void Pre() {
        for(int i = 1; i <= B; i++) 
            for(int j = 1; j <= N; j++)
                jump[j][i] = jump[jump[j][i - 1]][i - 1];
    }
    #define ls k << 1
    #define rs k << 1 | 1
    struct Node {
        int l, r, mi, si, tag;
    }T[MAXN * 4];
    void update(int k) {T[k].mi = min(T[ls].mi, T[rs].mi);}
    void ps(int k, int val) {T[k].mi = val; T[k].tag = val; return ;}
    void pushdown(int k) {
        if(!T[k].tag) return;
        ps(ls, T[k].tag); ps(rs, T[k].tag);
        T[k].tag = 0;
    }
    void Build(int k, int ll, int rr) {
        T[k].l = ll; T[k].r = rr; T[k].si = r - l + 1;
        if(ll == rr) {T[k].mi = a[ll]; return ;}
        int mid = ll + rr >> 1;
        Build(ls, ll, mid); Build(rs, mid + 1, rr);
        update(k);
    }
    void IntervalMem(int k, int ll, int rr, int val) {
        if(ll <= T[k].l && T[k].r <= rr) {
            T[k].mi = T[k].tag = val;
            return;
        }
        pushdown(k);
        int mid = T[k].l + T[k].r >> 1;
        if(ll <= mid) IntervalMem(ls, ll, rr, val);
        if(rr >  mid) IntervalMem(rs, ll, rr, val);
        update(k);
    }
    void TreeChange(int x, int y, int val) {
        while(top[x] != top[y]) {
            if(deep[top[x]] < deep[top[y]]) swap(x, y);
            IntervalMem(1, ID[top[x]], ID[x], val);
            x = fa[top[x]];
        }
        if(deep[x] < deep[y]) swap(x, y);
        IntervalMem(1, ID[y], ID[x], val);
    }
    int IntervalMin(int k, int ll, int rr) {
        int ans = INF;
        if(ll <= T[k].l && T[k].r <= rr) return T[k].mi; 
        pushdown(k);
        int mid = (T[k].l + T[k].r) >> 1;
        if(ll <= mid) ans = min(ans, IntervalMin(ls, ll, rr));
        if(rr >  mid) ans = min(ans, IntervalMin(rs, ll, rr));
        return ans;
    }
    int LCA(int x, int y) {
        while(top[x] != top[y]) {
            if(deep[top[x]] < deep[top[y]]) swap(x, y); 
            x = fa[top[x]];
        }
        if(deep[x] < deep[y]) swap(x, y);
        return y;
    }
    int Find(int rt, int x) {
        for(int i = B; i >= 0; i--) 
            while(deep[jump[rt][i]] > deep[x])
                rt = jump[rt][i];   
        return rt;
    }
    int Query(int x) {
        if(x == root) return T[1].mi;
        int lca = LCA(x, root);
        if(lca != x) return IntervalMin(1, l[x], r[x]);
        int v = Find(root, x), ans = INF;
        if(l[v] > 1) ans = min(ans, IntervalMin(1, 1, l[v] - 1));//tag
        if(r[v] < N) ans = min(ans, IntervalMin(1, r[v] + 1, tot));
        return ans;
    }
    int main() {
        N = read(); M = read();
        for(int i = 1; i <= N - 1; i++) {
            int x = read(), y = read();
            v[x].push_back(y); v[y].push_back(x);
        }
        for(int i = 1; i <= N; i++) b[i] = read();
        root = read(); 
        deep[1] = 1; 
        dfs1(1, 0); 
        dfs2(1, 1);
        Pre();  
        Build(1, 1, tot); 
        while(M--) {
            int opt = read();
            if(opt == 1) root = read();
            else if(opt == 2){
                int x1 = read(), x2 = read(), v = read();
                TreeChange(x1, x2, v);
            } else {
                int x = read();
                printf("%d
    ", Query(x));
            }
        }
        return 0;
    } 
    
    /*
    3 7
    1 2
    1 3
    1 2 3
    1
    3 1
    2 1 1 6
    3 1
    2 2 2 5
    3 1
    2 3 3 4
    3 1
    */
  • 相关阅读:
    [转]Confluence How to use Table Transformer macro
    [转]Jira Chart Macro
    [转]Jira Work with issue workflows
    [转]Jira Issues Macro
    [转]Confluence FormatWiki text Color Advanced table cells formatting
    Jira Connecting to databases Querying the Current JIRA Database
    [转]Insert the Jira issues macro create and display Jira issues on Confluence pages
    [转]User related Groovy script snippets for ScriptRunner for JIRA (Server/Data Center)
    [转]Three ways to update an issue in Jira Java Api
    [转]Jira ScriptRunner Behaviours Examples Subtask Default Fields
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/9364916.html
Copyright © 2020-2023  润新知