• Codeforces#498F. Xor-Paths(折半搜索)


    time limit per test
    3 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    There is a rectangular grid of size n×mn×m. Each cell has a number written on it; the number on the cell (i,ji,j) is ai,jai,j. Your task is to calculate the number of paths from the upper-left cell (1,11,1) to the bottom-right cell (n,mn,m) meeting the following constraints:

    • You can move to the right or to the bottom only. Formally, from the cell (i,ji,j) you may move to the cell (i,j+1i,j+1) or to the cell (i+1,ji+1,j). The target cell can't be outside of the grid.
    • The xor of all the numbers on the path from the cell (1,11,1) to the cell (n,mn,m) must be equal to kk (xor operation is the bitwise exclusive OR, it is represented as '^' in Java or C++ and "xor" in Pascal).

    Find the number of such paths in the given grid.

    Input

    The first line of the input contains three integers nn, mm and kk (1n,m201≤n,m≤20, 0k10180≤k≤1018) — the height and the width of the grid, and the number kk.

    The next nn lines contain mm integers each, the jj-th element in the ii-th line is ai,jai,j (0ai,j10180≤ai,j≤1018).

    Output

    Print one integer — the number of paths from (1,11,1) to (n,mn,m) with xor sum equal to kk.

    Examples
    input
    Copy
    3 3 11
    2 1 5
    7 10 0
    12 6 4
    output
    Copy
    3
    input
    Copy
    3 4 2
    1 3 3 3
    0 3 3 2
    3 0 1 1
    output
    Copy
    5
    input
    Copy
    3 4 1000000000000000000
    1 3 3 3
    0 3 3 2
    3 0 1 1
    output
    Copy
    0
    Note

    All the paths from the first example:

    • (1,1)(2,1)(3,1)(3,2)(3,3)(1,1)→(2,1)→(3,1)→(3,2)→(3,3);
    • (1,1)(2,1)(2,2)(2,3)(3,3)(1,1)→(2,1)→(2,2)→(2,3)→(3,3);
    • (1,1)(1,2)(2,2)(3,2)(3,3)(1,1)→(1,2)→(2,2)→(3,2)→(3,3).

    All the paths from the second example:

    • (1,1)(2,1)(3,1)(3,2)(3,3)(3,4)(1,1)→(2,1)→(3,1)→(3,2)→(3,3)→(3,4);
    • (1,1)(2,1)(2,2)(3,2)(3,3)(3,4)(1,1)→(2,1)→(2,2)→(3,2)→(3,3)→(3,4);
    • (1,1)(2,1)(2,2)(2,3)(2,4)(3,4)(1,1)→(2,1)→(2,2)→(2,3)→(2,4)→(3,4);
    • (1,1)(1,2)(2,2)(2,3)(3,3)(3,4)(1,1)→(1,2)→(2,2)→(2,3)→(3,3)→(3,4);
    • (1,1)(1,2)(1,3)(2,3)(3,3)(3,4)(1,1)→(1,2)→(1,3)→(2,3)→(3,3)→(3,4).

    题意:从$(1, 1)$走到$(n, m)$,路径上权值异或起来为$k$的有几条

    昨晚前五题都1A之后有点上天qwq。。想了很久才发现这是个思博题不过没时间写了qwq。

    考虑如果直接dfs的话是$2^{n + m}$

    然后meet in the middle 一下就好了

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    #include<queue>
    #include<map>
    #include<ext/pb_ds/assoc_container.hpp>
    #include<ext/pb_ds/hash_policy.hpp>
    using namespace __gnu_pbds;
    #define MP(x, y) make_pair(x, y)
    #define Pair pair<int, int> 
    #define int long long 
    using namespace std;
    const int MAXN  = 2 * 1e5 + 10, INF = 1e9 + 10;
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, M, K;
    int a[21][21];
    cc_hash_table<int, int> mp[21];
    int dfs(int x, int y, int now) {
        if(x < 1 || x > N || y < 1 || y > M) return 0;
        if(x + y == (N + M + 2) / 2) return mp[x][now ^ a[x][y]];
        int ans = 0;
        ans += dfs(x - 1, y, now ^ a[x - 1][y]);
        ans += dfs(x, y - 1, now ^ a[x][y - 1]);
        return ans;
    }
    void fuck(int x, int y, int now) {
        if(x < 1 || x > N || y < 1 || y > M) return ;
        if(x + y == (N + M + 2) / 2) {mp[x][now]++; return ;}
        fuck(x + 1, y, now ^ a[x + 1][y]);
        fuck(x, y + 1, now ^ a[x][y + 1]);
    }
    main() {
    #ifdef WIN32
        freopen("a.in", "r", stdin);
    #endif
        N = read(); M = read(); K = read();
        for(int i = 1; i <= N; i++)
            for(int j = 1; j <= M; j++)
                a[i][j] = read();
        fuck(1, 1, a[1][1]);
        printf("%lld", dfs(N, M, K ^ a[N][M]));
    }
    /*
    1 1 1000000000000000000
    1000000000000000000
    */
  • 相关阅读:
    [VirtaulBox]网络连接设置
    LeetCode
    LeetCode
    LeetCode
    LeetCode-37.Sudok Solver
    LeetCode-36.Valid Sudoku
    LeetCode-52.N-Queen II
    LeetCode-51.N-Queens
    LeetCode-22.Generate Parentheses
    LeetCode-111.Mininum Depth of Binary Tree
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/9323274.html
Copyright © 2020-2023  润新知