• 曼哈顿距离与切比雪夫距离及其相互转化


    本文只讨论二维空间中的曼哈顿距离与切比雪夫距离

    曼哈顿距离

    定义

    设平面空间内存在两点,它们的坐标为$(x1,y1)$,$(x2,y2)$

    则$dis=|x1-x2|+|y1-y2|$

    即两点横纵坐标差之和

    煮个栗子

    如图所示,图中$A,B$两点的曼哈顿距离为$AC+BC=4+3=7$

    切比雪夫距离

    定义

    设平面空间内存在两点,它们的坐标为$(x1,y1)$,$(x2,y2)$

    则$dis=max(|x1-x2|,|y1-y2|)$

    即两点横纵坐标差的最大值

    再煮个栗子

    $dis=max(AC,BC)=AC=4$

    两者之间的关系

    两者的定义看上去好像毛线关系都没有,但实际上,这两种距离可以相互转化

    我们考虑最简单的情况,在一个二维坐标系中,设原点为$(0,0)$

    如果用曼哈顿距离表示,则与原点距离为$1$的点会构成一个边长为$sqrt{2}$的正方形

    如果用切比雪夫距离表示,则与原点距离为$1$的点会构成一个边长为$2$的正方形

    仔细对比这两个图形,我们会发现这两个图形长得差不多,他们应该可以通过某种变换互相转化。

    事实上,

    将一个点$(x,y)$的坐标变为$(x+y,x-y)$后,原坐标系中的曼哈顿距离 $=$ 新坐标系中的切比雪夫距离

    将一个点$(x,y)$的坐标变为$(frac{x+y}{2},frac{x-y}{2})$ 后,原坐标系中的切比雪夫距离 $=$ 新坐标系中的曼哈顿距离

    用处

    切比雪夫距离在计算的时候需要取$max$,往往不是很好优化,对于一个点,计算其他点到该的距离的复杂度为$O(n)$

    而曼哈顿距离只有求和以及取绝对值两种运算,我们把坐标排序后可以去掉绝对值的影响,进而用前缀和优化,可以把复杂度降为$O(1)$

    例题

     

  • 相关阅读:
    高级查询相关练习
    高级查询
    CRUD简单查询
    eclipse 实际运用
    控制台输入与Math Random的基本使用
    调用方法
    jQuery 基础语法
    Java第二课 分支与循环
    Java第一课
    网页项目制作收获2
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/8253530.html
Copyright © 2020-2023  润新知