• POJ 1655 Balancing Act(树的重心)


    Balancing Act
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 14062   Accepted: 5937

    Description

    Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
    For example, consider the tree: 

    Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two. 

    For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number. 

    Input

    The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

    Output

    For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

    Sample Input

    1
    7
    2 6
    1 2
    1 4
    4 5
    3 7
    3 1
    

    Sample Output

    1 2

    Source

     
    dp求树的重心:
    我们首先找到每一个节点所有子树的大小。
    然后用n-size[pos]算出祖先的大小,
    判断即可
     
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<cmath>
     5 #define lli long long int 
     6 using namespace std;
     7 const int MAXN=2000001;
     8 const int maxn=0x7fffff;
     9 void read(int &n)
    10 {
    11     char c='+';int x=0;bool flag=0;
    12     while(c<'0'||c>'9'){c=getchar();if(c=='-')flag=1;}
    13     while(c>='0'&&c<='9')
    14     x=(x<<1)+(x<<3)+c-48,c=getchar();
    15     flag==1?n=-x:n=x;
    16 }
    17 struct node
    18 {
    19     int u,v,w,nxt;
    20 }edge[MAXN];
    21 int head[MAXN];
    22 int num=1;
    23 int size[MAXN];
    24 int ans=maxn;
    25 int out=maxn;
    26 int n;
    27 int mx[MAXN];
    28 void add_edge(int x,int y)
    29 {
    30     edge[num].u=x;
    31     edge[num].v=y;
    32     edge[num].nxt=head[x];
    33     head[x]=num++;
    34 }
    35 void dfs(int pos,int fa)
    36 {
    37 //    cout<<pos<<endl;
    38     size[pos]=1;
    39     int now=0;
    40     for(int i=head[pos];i!=-1;i=edge[i].nxt)
    41     {
    42         
    43         if(edge[i].v!=fa)
    44         {
    45             dfs(edge[i].v,pos);
    46             size[pos]+=size[edge[i].v];
    47             mx[pos]=max(mx[pos],size[edge[i].v]);
    48         }
    49     }
    50     mx[pos]=max(mx[pos],n-size[pos]);
    51     if(mx[pos]<mx[ans])
    52         ans=pos;
    53     if(mx[pos]==mx[ans]&&pos<ans)
    54         ans=pos;
    55 }
    56 int  main()
    57 {
    58     int T;
    59     read(T);
    60     while(T--)
    61     {
    62         read(n);
    63         //cout<<maxn<<endl;
    64         num=1;
    65         memset(head,-1,sizeof(head));
    66         memset(size,0,sizeof(size));
    67         memset(mx,0,sizeof(mx));
    68         mx[0]=maxn;
    69         ans=0;
    70         for(int i=1;i<=n-1;i++)
    71         {
    72             int x,y,z;
    73              read(x);read(y);
    74              add_edge(x,y);
    75              add_edge(y,x);
    76         }
    77         dfs(1,0);
    78         printf("%d %d
    ",ans,mx[ans]);    
    79         
    80     } 
    81     return 0;
    82 }
  • 相关阅读:
    js中属性节点的应用
    改变属性的值的方法
    获取所有节点的一些方法的属性(有待改善)
    JS中修改属性
    获取节点的几种小案例
    在页面上点击按钮,出现弹出框
    SelectionSort,选择排序
    BubbleSort冒泡排序
    混合app
    使用(Unicode字符)让inline水平元素换行
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/7197033.html
Copyright © 2020-2023  润新知