• 51nod1238 最小公倍数之和 V3(莫比乌斯反演)


    题意

    题目链接

    Sol

    不想打公式了,最后就是求一个

    (sum_{i=1}^n ig(frac{N}{i}))

    (g(i) = sum_{i=1}^n phi(i) i^2)

    拉个(id2)卷一下

    这个博客推的狠详细

    #include<bits/stdc++.h> 
    #define int long long 
    #define LL long long 
    using namespace std;
    const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10, INV2 = 500000004, INV6 = 166666668, B = 1e6;
    template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
    template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
    template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
    template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
    void print(int x) {
    	if(!x) return ;
    	print(x / 10);
    	putchar(x % 10 + '0');
    }
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = 1ll * x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int g[MAXN], phi[MAXN], mu[MAXN], vis[MAXN], prime[MAXN], tot;
    map<int, int> mp;
    int sum(int N) {return mul(mul(N % mod, add(N, 1)), INV2);}
    int sum2(int N) {return mul(mul(N % mod, mul(add(N, 1), mul(2, N) + 1)), INV6);}
    int sum3(int N) {return mul(sum(N), sum(N));}
    void sieve(int N) {
    	vis[1] = phi[1] = mu[1] = 1;
    	for(int i = 2; i <= N; i++) {
    		if(!vis[i]) prime[++tot] = i, mu[i] = -1, phi[i] = i - 1;
    		for(int j = 1; j <= tot && i * prime[j] <= N; j++) {
    			vis[i * prime[j]] = 1;
    			if(i % prime[j]) phi[i * prime[j]] = phi[i] * phi[prime[j]], mu[i * prime[j]] = -mu[i];
    			else {mu[i * prime[j]] = 0; phi[i * prime[j]] = phi[i] * prime[j]; break;};
    		}
    	}
    	for(int i = 1; i <= N; i++) g[i] = add(g[i - 1], mul(phi[i], mul(i, i)));
    }
    LL dsieve(int N) {
    	if(N <= B) return g[N];
    	else if(mp[N]) return mp[N];
    	LL t = sum3(N);
    	for(int i = 2, nxt; i <= N; i = nxt + 1) {
    		nxt = N / (N / i); 
    		add2(t, -mul(add(sum2(nxt), -sum2(i - 1)), dsieve(N / i)));
    	}
    	return mp[N] = t;
    }
    signed main() {
    	sieve(B);
    	int N = read(), ans = 0;
    	for(int i = 1, nxt; i <= N; i = nxt + 1) {
    		nxt = N / (N / i);
    		add2(ans, mul(add(sum(nxt), -sum(i - 1)), dsieve(N / i)));
    	}
    	print(ans);
        return 0;
    }
    
  • 相关阅读:
    ES6新特性概览
    ECMAScript 位运算符
    jQuery源码分析系列(39) : 动画队列
    浏览器的工作原理:新式网络浏览器幕后揭秘
    jQuery源码分析系列(38) : 队列操作
    正则表达式30分钟入门教程
    jQuery源码分析系列(37) : Ajax 总结
    jQuery源码分析系列(36) : Ajax
    jQuery源码分析系列(35) : Ajax
    jQuery源码分析系列(34) : Ajax
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/10580398.html
Copyright © 2020-2023  润新知