• cf1139D. Steps to One(dp)


    题意

    题目链接

    ([1, M])中随机选数,问使得所有数gcd=1的期望步数

    Sol

    一个很显然的思路是设(f[i])表示当前数为(i),期望的操作轮数,转移的时候直接枚举gcd

    (f[i] = 1 + frac{ sum_{j=1}^N f[gcd(i, j)]}{N})

    然后移一下项就可以算出(f[i])了。

    发现gcd相同的有很多,可以预处理一下。

    复杂度(O(跑的过))

    还有一种反演做法表示推不出来qwq

    #include<bits/stdc++.h> 
    #define Pair pair<int, int>
    #define MP(x, y) make_pair(x, y)
    #define fi first
    #define se second
    //#define int long long 
    #define LL long long 
    #define ull unsigned long long 
    #define Fin(x) {freopen(#x".in","r",stdin);}
    #define Fout(x) {freopen(#x".out","w",stdout);}
    using namespace std;
    const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10;
    const double eps = 1e-9;
    template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
    template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
    template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
    template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
    template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
    template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
    template <typename A> inline void debug(A a){cout << a << '
    ';}
    template <typename A> inline LL sqr(A x){return 1ll * x * x;}
    template <typename A, typename B> inline LL fp(A a, B p, int md = mod) {int b = 1;while(p) {if(p & 1) b = mul(b, a);a = mul(a, a); p >>= 1;}return b;}
    template <typename A, typename B> inline A gcd(A x, B y) {return !y ? x : gcd(y, x % y);}
    int inv(int x) {
    	return fp(x, mod - 2);
    }
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, f[MAXN], INVN;
    vector<int> d[MAXN], cnt[MAXN];
    void sieve() {
    	for(int i = 1; i <= N; i++) 
    		for(int k = i; k <= N; k += i) d[k].push_back(i);
    	for(int i = 1; i <= N; i++) {
    		cnt[i].resize(d[i].size() + 1);
    		for(int j = d[i].size() - 1; ~j; j--) {
    			cnt[i][j] = N / d[i][j];
    			for(int k = j + 1; k < d[i].size(); k++)
    				if(!(d[i][k] % d[i][j])) cnt[i][j] -= cnt[i][k];
    		}
    		//for(int j = 0; j < d[i].size(); j++)
    		//	printf("%d %d %d
    ", i, d[i][j], cnt[i][j]);
    	}
    			
    }
    signed main() {
    	N = read(); INVN = inv(N);
    	sieve();
    	int ans = 0;
    	for(int i = 2; i <= N; i++) {
    		int lf = N, tmp = 0;
    		/*
    		for(int j = 1, t = 1; j <= N; j++) {
    			if((t = gcd(i, j)) == i) lf--;
    			else add2(tmp, f[t]);
    		}
    		*/
    		for(int j = 0; j < d[i].size(); j++) {
    			if(d[i][j] == i) lf -= cnt[i][j];
    			else add2(tmp, mul(cnt[i][j], f[d[i][j]]));
    		}
    		f[i] = add(N, tmp); 
    		mul2(f[i], inv(lf));
    	}
    	for(int i = 1; i <= N; i++) add2(ans, f[i] + 1);
    	cout << mul(ans, INVN);
        return 0;
    }
    
  • 相关阅读:
    css侧边栏之综合实例3
    css侧边栏之综合实例2
    css实例之侧边栏
    css实例之正文
    css之使用 | margin | padding
    css之链接 | 点击后变色 | 悬停 | hover
    1.2(Mybatis学习笔记)Mybatis核心配置
    1.1(Mybatis学习笔记)初识Mybatis
    1.1(Spring学习笔记)Spring-事务基础
    1.4(Spring学习笔记)Spring-JDBC基础
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/10578527.html
Copyright © 2020-2023  润新知