• BZOJ2564: 集合的面积(闵可夫斯基和 凸包)


    题意

    题目链接

    Sol

    这个东西的学名应该叫“闵可夫斯基和”。就是合并两个凸包

    首先我们先分别求出给出的两个多边形的凸包。合并的时候直接拿个双指针扫一下,每次选最凸的点就行了。

    复杂度(O(nlogn + n))

    #include<bits/stdc++.h>
    #define LL long long 
    //#define int long long 
    using namespace std;
    const int MAXN = 1e6 + 10;
    inline int read() {
    	char c = getchar(); int x = 0, f = 1;
    	while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    	while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    	return x * f;
    }
    int N, M;
    struct Point {
    	LL x, y;
    	Point operator - (const Point &rhs) const {
    		return {x - rhs.x, y - rhs.y};
    	}
    	Point operator + (const Point &rhs) const {
    		return {x + rhs.x, y + rhs.y};
    	}
    	LL operator ^ (const Point &rhs) const {
    		return x * rhs.y - y * rhs.x;
    	}
    	bool operator < (const Point &rhs) const {
    		return x == rhs.x ? y < rhs.y : x < rhs.x;
    	}
    	bool operator == (const Point &rhs) const {
    		return x == rhs.x && y == rhs.y;
    	}
    	bool operator != (const Point &rhs) const {
    		return x != rhs.x || y != rhs.y;
    	}
    };
    vector<Point> v1, v2;
    Point q[MAXN];
    int top;
    void insert(Point a) {
    	while(top > 1 && ((q[top] - q[top - 1]) ^ (a - q[top - 1])) < 0) top--;
    	q[++top] = a;
    }
    void GetConHull(vector<Point> &v) {
    	sort(v.begin(), v.end());
    	q[++top] = v[0];
    	for(int i = 1; i < v.size(); i++) if(v[i] != v[i - 1]) insert(v[i]);
    	for(int i = v.size() - 2; i >= 0; i--) if(v[i] != v[i + 1]) insert(v[i]);
    	v.clear(); 
    	for(int i = 1; i <= top; i++) v.push_back(q[i]); top = 0;
    }
    void Merge(vector<Point> &a, vector<Point> &b) {
    	vector<Point> c;
    	q[++top] = a[0] + b[0]; 
    	int i = 0, j = 0;
    	while(i + 1 < a.size() && j + 1< b.size()) {
    		Point n1 = (a[i] + b[j + 1]) - q[top], n2 = (a[i + 1] + b[j]) - q[top];
    		if((n1 ^ n2) < 0) 
    			q[++top] = a[i + 1] + b[j], i++;
    		else 
    			q[++top] = a[i] + b[j + 1], j++; 
    	}
    	for(; i < a.size(); i++) q[++top] = a[i] + b[b.size() - 1];
    	for(; j < b.size(); j++) q[++top] = b[j] + a[a.size() - 1];
    	for(int i = 1; i <= top; i++) c.push_back(q[i]);
    	LL ans = 0;
    	//for(auto &g : c) printf("%d %d
    ", g.x, g.y);
    	for(int i = 1; i < c.size() - 1; i++) 
    		ans += (c[i] - c[0]) ^ (c[i + 1] - c[0]);
    	cout << ans;
    }
    signed main() {
    	N = read(); M = read();
    	for(int i = 1; i <= N; i++) {
    		int x = read(), y = read();
    		v1.push_back({x, y});
    	}
    	for(int i = 1; i <= M; i++) {
    		int x = read(), y = read();
    		v2.push_back({x, y});
    	}
    	GetConHull(v1);
    	GetConHull(v2);
    	Merge(v1, v2);
    	return 0;
    }
    /*
    4 5
    0 0 2 1 0 1 2 0
    0 0 1 0 0 2 1 2 0 1
    */
    
  • 相关阅读:
    如何编译Linux内核
    linux启动过程
    linux ifconfig
    Android 4.0 x86安装教程 附带联网参数详细设置
    linux ntfs模块
    Java 入门进阶
    深入理解Java中的String
    Java中字符串string的数据类型
    IDEA设置JVM运行参数
    Java11实战:模块化的 Netty RPC 服务项目
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/10381545.html
Copyright © 2020-2023  润新知