• cf250D. The Child and Sequence(线段树 均摊复杂度)


    题意

    题目链接

    单点修改,区间mod,区间和

    Sol

    如果x > mod ,那么 x % mod < x / 2

    证明:

    即得易见平凡,

    仿照上例显然,

    留作习题答案略,

    读者自证不难。

    反之亦然同理,

    推论自然成立,

    略去过程Q.E.D.,

    由上可知证毕。

    然后维护个最大值就做完了。。

    复杂度不知道是一个log还是两个log,大概是两个吧(线段树一个+最多改log次。)

    #include<bits/stdc++.h> 
    #define Pair pair<int, int>
    #define MP(x, y) make_pair(x, y)
    #define fi first
    #define se second
    //#define int long long 
    #define LL long long 
    #define Fin(x) {freopen(#x".in","r",stdin);}
    #define Fout(x) {freopen(#x".out","w",stdout);}
    using namespace std;
    const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10;
    const double eps = 1e-9;
    template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
    template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
    template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
    template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
    template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
    template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
    template <typename A> inline void debug(A a){cout << a << '
    ';}
    template <typename A> inline LL sqr(A x){return 1ll * x * x;}
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, M, a[MAXN];
    #define ls k << 1
    #define rs k << 1 | 1
    LL sum[MAXN];
    int mx[MAXN];
    void update(int k) {
    	sum[k] = sum[ls] + sum[rs];
    	mx[k] = max(mx[ls], mx[rs]);
    }
    void Build(int k, int ll, int rr) {
    	if(ll == rr) {sum[k] = mx[k] = read(); return ;}
    	int mid =  ll + rr >> 1;
    	Build(ls, ll, mid); Build(rs, mid + 1, rr);
    	update(k);
    }
    LL Query(int k, int l, int r, int ql, int qr) {
    	if(ql <= l && r <= qr) return sum[k];
    	int mid = l + r >> 1;
    	if(ql > mid) return Query(rs, mid + 1, r, ql, qr);
    	else if(qr <= mid) return Query(ls, l, mid, ql, qr);
    	else return Query(ls, l, mid, ql, qr) + Query(rs, mid + 1, r, ql, qr);
    }
    void Modify(int k, int l, int r, int p, int v) {
    	if(l == r) {sum[k] = mx[k] = v; return ;}
    	int mid = l + r >> 1;
    	if(p <= mid) Modify(ls, l, mid, p, v);
    	else Modify(rs, mid + 1, r, p, v);
    	update(k); 
    }
    void Mod(int k, int l, int r, int ql, int qr, int x) {
    	if(mx[k] < x) return ;
    	if(l == r) {sum[k] = mx[k] % x; mx[k] %= x; return ;}
    	int mid = l + r >> 1;
    	if(ql <= mid) Mod(ls, l, mid, ql, qr, x);
    	if(qr  > mid) Mod(rs, mid + 1, r, ql, qr, x);
    	update(k);
    }
    signed main() {
        N = read(); M = read();
        Build(1, 1, N);
        while(M--) {
        	int opt = read();
        	if(opt == 1) {
        		int l = read(), r = read();
    			cout << Query(1, 1, N, l, r) << '
    '; 
    		} else if(opt == 2) {
    			int l = read(), r = read(), x = read();
    			Mod(1, 1, N, l, r, x); 
    		} else {
    			int k = read(), x = read();
    			Modify(1, 1, N, k, x);
    		}
    	}
        return 0;
    }
    /*
    
    */
    
  • 相关阅读:
    求转置矩阵问题
    喷水装置
    面试之谈
    迭代任意8种数据类型数组
    Session那点事
    随机验证码
    正则表达式:网页爬虫
    模拟上传服务端
    Properties集合的练习
    用递归算法对指定目录的深度遍历
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/10347536.html
Copyright © 2020-2023  润新知