• BZOJ2707: [SDOI2012]走迷宫(期望 tarjan 高斯消元)


    题意

    题目链接

    Sol

    (f[i])表示从(i)走到(T)的期望步数

    显然有(f[x] = sum_{y} frac{f[y]}{deg[x]} + 1)

    证明可以用全期望公式。

    那么我们可以把每个强联通分量里的点一起高斯消元,就做完了。

    (warning:BZOJ没有C++11,但是下面的代码是正确的,至于为什么可以点题目链接。。。。)

    #include<bits/stdc++.h>
    using namespace std;
    const int MAXN = 1e6 + 10;
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, M, S, T;
    int dfn[MAXN], low[MAXN], vis[MAXN], tot, cnt, inder[MAXN], col[MAXN], ha[MAXN];
    double f[201][201], deg[MAXN], ans[MAXN];
    stack<int> s;
    vector<int> v[MAXN], scc[MAXN], E[MAXN];
    void Pre() {
        for(int i = 1; i <= N; i++) {
            double sum = 0; f[i][i] = 1.0;
            for(auto &x : v[i]) 
                if(x != T) sum += 1.0 / deg[x], f[i][x] = -1.0;
            f[i][N + 1] = sum;
        }
    }
    void Gauss(int n) {
        for(int i = 1; i <= n; i++) {
            int mx = i;
            for(int j = i + 1; j <= n; j++) if(f[j][i] > f[mx][i]) mx = j;
            if(i != mx) swap(f[i], f[mx]);
            for(int j = 1; j <= n; j++) {
                if(i == j) continue;
                double p = f[j][i] / f[i][i];
                for(int k = i + 1; k <= n + 1; k++) f[j][k] -= f[i][k] * p;
            }
        }
        for(int i = 1; i <= n; i++) f[i][n + 1] = f[i][n + 1] / f[i][i];
    }
    void Tarjan(int x) {
        dfn[x] = low[x] = ++tot; s.push(x); vis[x] = 1;
        for(auto &to : v[x]) {
            if(!dfn[to]) Tarjan(to), low[x] = min(low[x], low[to]);
            else if(vis[to]) low[x] = min(low[x], dfn[to]);
        }
        if(low[x] == dfn[x]) {
            int h; cnt++;
            do {
                h = s.top(); s.pop(); 
                vis[h] = 0;
                scc[cnt].push_back(h);
                col[h] = cnt;
            }while(h != x);
        }
    }
    void solve(vector<int> &p) {
        memset(vis, 0, sizeof(vis));
        memset(f, 0, sizeof(f)); int num = p.size();
        for(int i = 0; i < p.size(); i++) vis[p[i]] = i + 1;
        for(int i = 0; i < p.size(); i++) {
            int x = p[i];
            f[i + 1][i + 1] = deg[x]; f[i + 1][num + 1] = deg[x];
            for(auto &to : v[x]) {
                if(vis[to]) f[i + 1][vis[to]] -= 1;
                else f[i + 1][num + 1] += ans[to];
            }       
        }
        Gauss(num);
        for(int i = 0; i < p.size(); i++) ans[p[i]] = f[i + 1][num + 1];
    }
    void Topsort() {
        queue<int> q; q.push(col[T]);
        while(!q.empty()) {
            int p = q.front(); q.pop();
            for(auto &to : E[p]) if(!(--inder[to])) q.push(to);
            if(p != col[T]) 
                solve(scc[p]); 
        }
    }
    int main() {
        N = read(); M = read(); S = read(); T = read();
        for(int i = 1; i <= M; i++) {
            int x = read(), y = read();
            if(x != T) v[x].push_back(y), deg[x]++;
        }
        Tarjan(S);
        if(!dfn[T]) {puts("INF"); return 0;}
        for(int i = 1; i <= N; i++) {
            for(auto &x : v[i]) 
                if(col[i] != col[x]) 
                    inder[col[i]]++, E[col[x]].push_back(col[i]);
        }
        for(int i = 1; i <= cnt; i++) if(i != col[T] && !inder[i]) {puts("INF"); return 0;}
        Topsort();
        printf("%.3lf", ans[S]);
        return 0;
    }
    
  • 相关阅读:
    MySql 5.6以下版本自定义函数返回VARCHAR的中文问题
    解决Tomcat的java.lang.IllegalStateException: Cannot create a session after the response has been committed问题
    Lucene自定义规则范围查询
    JS吊炸天的代码
    又是正则
    JS显示指定字符数,避免一个中文两个字符的情况
    PostgreSql查看当前表的主外键关系
    java基础(个人学习笔记) A
    Elasticsearch5.5.1插件开发指南
    ElasticSearch5.5.1插件分类
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/10268011.html
Copyright © 2020-2023  润新知