• 洛谷P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)


    题意

    题目链接

    Sol

    打出暴力不难发现时间复杂度的瓶颈在于求(sum_{i = 1}^n i^k)

    老祖宗告诉我们,这东西是个(k)次多项式,插一插就行了

    上面的是(O(Tk^2))

    下面是(O(Tk^3))

    // luogu-judger-enable-o2
    #include<bits/stdc++.h>
    #define LL long long 
    using namespace std;
    const int MAXN = 66, mod = 1e9 + 7;
    inline LL read() {
        char c = getchar(); LL x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '0') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    LL N, M, a[MAXN], tot, inv[3601];
    LL add(LL x, LL y) {
        if(x + y < 0) return x + y + mod;
        return x + y >= mod ? x + y - mod : x + y;
    }
    void add2(LL &x, LL y) {
        if(x + y < 0) x = x + y + mod;
        else x = (x + y >= mod ? x + y - mod : x + y);
    }
    LL mul(LL x, LL y) {
        return 1ll * x * y % mod;
    }
    LL fp(LL a, LL p) {
        LL base = 1;
        while(p) {
            if(p & 1) base = mul(base, a);
            a = mul(a, a); p >>= 1;
        }
        return base;
    }
    LL x[MAXN], y[MAXN], fac[MAXN], ifac[MAXN], pre[MAXN], suf[MAXN];
    LL get(LL N, LL M) {// sum_{i=1}^n i^m
        //printf("%d %d
    ", N, M);
        LL Lim = M + 1, ans = 0; memset(y, 0, sizeof(y));
        for(int i = 1; i <= Lim; i++) add2(y[i], add(y[i - 1], fp(i, M)));
        pre[0] = N; suf[Lim + 1] = 1; 
        for(int i = 1; i <= Lim; i++) pre[i] = mul(pre[i - 1], add(N, -i));
        for(int i = Lim; i >= 1; i--) suf[i] = mul(suf[i + 1], add(N, -i));
        for(int i = 0; i <= Lim; i++) {
        	LL up = mul(y[i], mul(pre[i - 1], suf[i + 1])),
        	   down = mul(ifac[i], ifac[Lim - i]);
        	if((Lim - i) & 1) down = mod - down;
        	//printf("%d %d
    ", up, down);
            ans = add(ans, mul(up, down));
        }
        return ans;
    }
    void solve() {
        N = read(); M = read();
        memset(a, 0, sizeof(a));
        LL ans = 0;
        for(LL i = 1; i <= M; i++) a[i] = read(); a[++M] = ++N;
        sort(a + 1, a + M + 1);
        for(LL i = 1; i <= M; i++) {
            for(LL j = i; j <= M; j++) ans = add(ans, add(get(a[j] - 1, M ), -get(a[j - 1], M)));
            for(LL j = i + 1; j <= M; j++) a[j] = add(a[j], -a[i]); a[i] = 0;
        }
        printf("%lld
    ", ans);
    }   
    int main() {
        inv[1] = 1; for(int i = 2; i <= 3600; i++) inv[i] = mul((mod - mod / i), inv[mod % i]);
        fac[0] = 1; for(int i = 1; i <= 60; i++) fac[i] = mul(i, fac[i - 1]);
        ifac[60] = fp(fac[60], mod - 2);
        for(int i = 60; i >= 1; i--) ifac[i - 1] = mul(ifac[i], i);
        //cout << get(10, 2) << endl;
        for(LL T = read();T--; solve());
        return 0;
    }
    /*
    1
    1044536146 2
    883276404
    640705454
    
    */
    
    // luogu-judger-enable-o2
    #include<bits/stdc++.h>
    using namespace std;
    const int MAXN = 103, mod = 1e9 + 7;
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int add(int x, int y) {
        if(x + y < 0) return x + y + mod;
        return x + y >= mod ? x + y - mod : x + y;
    }
    int mul(int x, int y) {
        return 1ll * x * y % mod;
    }
    int fp(int a, int p) {
        int base = 1;
        while(p) {
            if(p & 1) base = mul(base, a);
            a = mul(a, a); p >>= 1;
        }
        return base;
    }
    int N, M, K, f[MAXN][MAXN], C[MAXN][MAXN], U[MAXN], R[MAXN], g[MAXN];
    int get(int U, int R) {
        memset(g, 0, sizeof(g));
        for(int i = 1; i <= MAXN - 1; i++) 
            for(int k = 1; k <= i; k++) 
                g[i] = add(g[i], mul(fp(k, N - R), fp(i - k, R - 1)));
        int ans = 0;
        for(int i = 1; i <= MAXN - 1; i++) {
            int up = 1, down = 1;
            for(int j = 1; j <= MAXN - 1; j++) {
                if(i == j) continue;
                up = mul(up, add(U, -j));
                down = mul(down, add(i, -j));
            }	
            ans = add(ans, mul(g[i], mul(up, fp(down, mod - 2))));
        }
        return ans;
    }
    int main() {
        //freopen("a.in", "r", stdin);
        N = read(); M = read(); K = read();
        for(int i = 0; i <= N; i++) {
        	C[i][0] = C[i][i] = 1;
        	for(int j = 1; j < i; j++) C[i][j] = add(C[i - 1][j - 1], C[i - 1][j]);
        }
        for(int i = 1; i <= M; i++) U[i] = read();
        for(int i = 1; i <= M; i++) R[i] = read();
        f[0][N - 1] = 1;
        for(int i = 1; i <= M; i++) {
        	int t = get(U[i], R[i]);
        	for(int j = K; j <= N; j++) {
        		for(int k = j; k <= N - 1; k++) 
        			if(k - j <= R[i] - 1) f[i][j] = add(f[i][j], mul(mul(f[i - 1][k], C[k][k - j]), C[N - 1 - k][R[i] - 1 - (k - j)]));
        		f[i][j] = mul(f[i][j], t);
        	}
        }
        printf("%d", f[M][K]);
        return 0;
    }
    /*
    100 3 50
    500 500 456
    13 46 45
    */
    
  • 相关阅读:
    Java线程:线程栈模型与线程的变量
    Java线程:创建与启动
    Java线程:概念与原理
    oracle的备份与恢复
    oracle视图
    oracle PL/SQL的介绍
    Oracle掌管权限和角色
    oracle基础 管理索引
    oracle维护数据的完整性
    删除VisualStudio 2013中的 "send Feedback" 按钮
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/10056635.html
Copyright © 2020-2023  润新知