• (转)kafka实战


    转自https://www.cnblogs.com/hei12138/p/7805475.html

    1.       kafka介绍

     

    1.1.       主要功能

    根据官网的介绍,ApacheKafka®是一个分布式流媒体平台,它主要有3种功能:

      1:It lets you publish and subscribe to streams of records.发布和订阅消息流,这个功能类似于消息队列,这也是kafka归类为消息队列框架的原因

      2:It lets you store streams of records in a fault-tolerant way.以容错的方式记录消息流,kafka以文件的方式来存储消息流

      3:It lets you process streams of records as they occur.可以再消息发布的时候进行处理

     

    1.2.       使用场景

    1:Building real-time streaming data pipelines that reliably get data between systems or applications.在系统或应用程序之间构建可靠的用于传输实时数据的管道,消息队列功能

    2:Building real-time streaming applications that transform or react to the streams of data。构建实时的流数据处理程序来变换或处理数据流,数据处理功能

     

    1.3.       详细介绍

    Kafka目前主要作为一个分布式的发布订阅式的消息系统使用,下面简单介绍一下kafka的基本机制

      1.3.1 消息传输流程

        Producer即生产者,向Kafka集群发送消息,在发送消息之前,会对消息进行分类,即Topic,上图展示了两个producer发送了分类为topic1的消息,另外一个发送了topic2的消息。

        Topic即主题,通过对消息指定主题可以将消息分类,消费者可以只关注自己需要的Topic中的消息

        Consumer即消费者,消费者通过与kafka集群建立长连接的方式,不断地从集群中拉取消息,然后可以对这些消息进行处理。

        从上图中就可以看出同一个Topic下的消费者和生产者的数量并不是对应的。

      1.3.2 kafka服务器消息存储策略

     

        谈到kafka的存储,就不得不提到分区,即partitions,创建一个topic时,同时可以指定分区数目,分区数越多,其吞吐量也越大,但是需要的资源也越多,同时也会导致更高的不可用性,kafka在接收到生产者发送的消息之后,会根据均衡策略将消息存储到不同的分区中。

     

      在每个分区中,消息以顺序存储,最晚接收的的消息会最后被消费。

      1.3.3 与生产者的交互

     

        生产者在向kafka集群发送消息的时候,可以通过指定分区来发送到指定的分区中

        也可以通过指定均衡策略来将消息发送到不同的分区中

        如果不指定,就会采用默认的随机均衡策略,将消息随机的存储到不同的分区中

      1.3.4  与消费者的交互

      

        在消费者消费消息时,kafka使用offset来记录当前消费的位置

        在kafka的设计中,可以有多个不同的group来同时消费同一个topic下的消息,如图,我们有两个不同的group同时消费,他们的的消费的记录位置offset各不项目,不互相干扰。

        对于一个group而言,消费者的数量不应该多余分区的数量,因为在一个group中,每个分区至多只能绑定到一个消费者上,即一个消费者可以消费多个分区,一个分区只能给一个消费者消费

        因此,若一个group中的消费者数量大于分区数量的话,多余的消费者将不会收到任何消息。

    2.       Kafka安装与使用

     

    2.1.       下载

      你可以在kafka官网 http://kafka.apache.org/downloads下载到最新的kafka安装包,选择下载二进制版本的tgz文件,根据网络状态可能需要fq,这里我们选择的版本是0.11.0.1,目前的最新版

     

    2.2.       安装

      Kafka是使用scala编写的运行与jvm虚拟机上的程序,虽然也可以在windows上使用,但是kafka基本上是运行在linux服务器上,因此我们这里也使用linux来开始今天的实战。

      首先确保你的机器上安装了jdk,kafka需要java运行环境,以前的kafka还需要zookeeper,新版的kafka已经内置了一个zookeeper环境,所以我们可以直接使用

      说是安装,如果只需要进行最简单的尝试的话我们只需要解压到任意目录即可,这里我们将kafka压缩包解压到/home目录

     

    2.3.       配置

      在kafka解压目录下下有一个config的文件夹,里面放置的是我们的配置文件

      consumer.properites 消费者配置,这个配置文件用于配置于2.5节中开启的消费者,此处我们使用默认的即可

      producer.properties 生产者配置,这个配置文件用于配置于2.5节中开启的生产者,此处我们使用默认的即可

      server.properties kafka服务器的配置,此配置文件用来配置kafka服务器,目前仅介绍几个最基础的配置

      1. broker.id 申明当前kafka服务器在集群中的唯一ID,需配置为integer,并且集群中的每一个kafka服务器的id都应是唯一的,我们这里采用默认配置即可
      2. listeners 申明此kafka服务器需要监听的端口号,如果是在本机上跑虚拟机运行可以不用配置本项,默认会使用localhost的地址,如果是在远程服务器上运行则必须配置,例如:

              listeners=PLAINTEXT:// 192.168.180.128:9092。并确保服务器的9092端口能够访问

          3.zookeeper.connect 申明kafka所连接的zookeeper的地址 ,需配置为zookeeper的地址,由于本次使用的是kafka高版本中自带zookeeper,使用默认配置即可

              zookeeper.connect=localhost:2181

    2.4.       运行

    1. 启动zookeeper

    cd进入kafka解压目录,输入

    bin/zookeeper-server-start.sh config/zookeeper.properties

    启动zookeeper成功后会看到如下的输出

        2.启动kafka

    cd进入kafka解压目录,输入

    bin/kafka-server-start.sh config/server.properties

    启动kafka成功后会看到如下的输出

     

    2.5.       第一个消息

       2.5.1   创建一个topic

        Kafka通过topic对同一类的数据进行管理,同一类的数据使用同一个topic可以在处理数据时更加的便捷

        在kafka解压目录打开终端,输入

        bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test

        创建一个名为test的topic

     

             在创建topic后可以通过输入

                bin/kafka-topics.sh --list --zookeeper localhost:2181

       来查看已经创建的topic

      2.4.2   创建一个消息消费者

       在kafka解压目录打开终端,输入

        bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test --from-beginning

       可以创建一个用于消费topic为test的消费者

     

             消费者创建完成之后,因为还没有发送任何数据,因此这里在执行后没有打印出任何数据

             不过别着急,不要关闭这个终端,打开一个新的终端,接下来我们创建第一个消息生产者

      2.4.3         创建一个消息生产者

        在kafka解压目录打开一个新的终端,输入

        bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test

        在执行完毕后会进入的编辑器页面

    在发送完消息之后,可以回到我们的消息消费者终端中,可以看到,终端中已经打印出了我们刚才发送的消息

    3.       使用java程序

        跟上节中一样,我们现在在java程序中尝试使用kafka

        3.1  创建Topic

    public static void main(String[] args) {
        //创建topic
        Properties props = new Properties();
        props.put("bootstrap.servers", "192.168.180.128:9092");
        AdminClient adminClient = AdminClient.create(props);
        ArrayList<NewTopic> topics = new ArrayList<NewTopic>();
        NewTopic newTopic = new NewTopic("topic-test", 1, (short) 1);
        topics.add(newTopic);
        CreateTopicsResult result = adminClient.createTopics(topics);
        try {
            result.all().get();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
    }

      使用AdminClient API可以来控制对kafka服务器进行配置,我们这里使用NewTopic(String name, int numPartitions, short   replicationFactor)的构造方法来创建了一个名为“topic-test”,分区数为1,复制因子为1的Topic.

    3.2  Producer生产者发送消息

    public static void main(String[] args){
        Properties props = new Properties();
        props.put("bootstrap.servers", "192.168.180.128:9092");
        props.put("acks", "all");
        props.put("retries", 0);
        props.put("batch.size", 16384);
        props.put("linger.ms", 1);
        props.put("buffer.memory", 33554432);
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

        Producer<String, String> producer = new KafkaProducer<String, String>(props);
        for (int i = 0; i < 100; i++)
            producer.send(new ProducerRecord<String, String>("topic-test", Integer.toString(i), Integer.toString(i)));

        producer.close();

    }

    使用producer发送完消息可以通过2.5中提到的服务器端消费者监听到消息。也可以使用接下来介绍的java消费者程序来消费消息

    3.3 Consumer消费者消费消息

    public static void main(String[] args){
        Properties props = new Properties();
        props.put("bootstrap.servers", "192.168.12.65:9092");
        props.put("group.id", "test");
        props.put("enable.auto.commit", "true");
        props.put("auto.commit.interval.ms", "1000");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        final KafkaConsumer<String, String> consumer = new KafkaConsumer<String,String>(props);
        consumer.subscribe(Arrays.asList("topic-test"),new ConsumerRebalanceListener() {
            public void onPartitionsRevoked(Collection<TopicPartition> collection) {
            }
            public void onPartitionsAssigned(Collection<TopicPartition> collection) {
                //将偏移设置到最开始
                consumer.seekToBeginning(collection);
            }
        });
        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(100);
            for (ConsumerRecord<String, String> record : records)
                System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
        }
    }

    这里我们使用Consume API 来创建了一个普通的java消费者程序来监听名为“topic-test”的Topic,每当有生产者向kafka服务器发送消息,我们的消费者就能收到发送的消息。

    4.       使用spring-kafka

    Spring-kafka是正处于孵化阶段的一个spring子项目,能够使用spring的特性来让我们更方便的使用kafka

    4.1   基本配置信息

    与其他spring的项目一样,总是离不开配置,这里我们使用java配置来配置我们的kafka消费者和生产者。

    1. 引入pom文件

    <!--kafka start-->
    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka-clients</artifactId>
        <version>0.11.0.1</version>
    </dependency>
    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka-streams</artifactId>
        <version>0.11.0.1</version>
    </dependency>
    <dependency>
        <groupId>org.springframework.kafka</groupId>
        <artifactId>spring-kafka</artifactId>
        <version>1.3.0.RELEASE</version>
    </dependency>

    1. 创建配置类

    我们在主目录下新建名为KafkaConfig的类

    @Configuration
    @EnableKafka
    public class KafkaConfig {

    }

    1. 配置Topic

    在kafkaConfig类中添加配置

    //topic config Topic的配置开始
        @Bean
        public KafkaAdmin admin() {
            Map<String, Object> configs = new HashMap<String, Object>();
            configs.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.180.128:9092");
            return new KafkaAdmin(configs);
        }

        @Bean
        public NewTopic topic1() {
            return new NewTopic("foo", 10, (short) 2);
        }
    //topic的配置结束

    1. 配置生产者Factort及Template

    //producer config start
        @Bean
        public ProducerFactory<Integer, String> producerFactory() {
            return new DefaultKafkaProducerFactory<Integer,String>(producerConfigs());
        }
        @Bean
        public Map<String, Object> producerConfigs() {
            Map<String, Object> props = new HashMap<String,Object>();
            props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.180.128:9092");
            props.put("acks", "all");
            props.put("retries", 0);
            props.put("batch.size", 16384);
            props.put("linger.ms", 1);
            props.put("buffer.memory", 33554432);
            props.put("key.serializer", "org.apache.kafka.common.serialization.IntegerSerializer");
            props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
            return props;
        }
        @Bean
        public KafkaTemplate<Integer, String> kafkaTemplate() {
            return new KafkaTemplate<Integer, String>(producerFactory());
        }
    //producer config end

    5.配置ConsumerFactory

    //consumer config start
        @Bean
        public ConcurrentKafkaListenerContainerFactory<Integer,String> kafkaListenerContainerFactory(){
            ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<Integer, String>();
            factory.setConsumerFactory(consumerFactory());
            return factory;
        }

        @Bean
        public ConsumerFactory<Integer,String> consumerFactory(){
            return new DefaultKafkaConsumerFactory<Integer, String>(consumerConfigs());
        }


        @Bean
        public Map<String,Object> consumerConfigs(){
            HashMap<String, Object> props = new HashMap<String, Object>();
            props.put("bootstrap.servers", "192.168.180.128:9092");
            props.put("group.id", "test");
            props.put("enable.auto.commit", "true");
            props.put("auto.commit.interval.ms", "1000");
            props.put("key.deserializer", "org.apache.kafka.common.serialization.IntegerDeserializer");
            props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
            return props;
        }
    //consumer config end

    4.2  创建消息生产者

    //使用spring-kafka的template发送一条消息 发送多条消息只需要循环多次即可
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext(KafkaConfig.class);
        KafkaTemplate<Integer, String> kafkaTemplate = (KafkaTemplate<Integer, String>) ctx.getBean("kafkaTemplate");
            String data="this is a test message";
            ListenableFuture<SendResult<Integer, String>> send = kafkaTemplate.send("topic-test", 1, data);
            send.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() {
                public void onFailure(Throwable throwable) {

                }

                public void onSuccess(SendResult<Integer, String> integerStringSendResult) {

                }
            });
    }

    4.3    创建消息消费者

    我们首先创建一个一个用于消息监听的类,当名为”topic-test”的topic接收到消息之后,我们的这个listen方法就会调用。

    public class SimpleConsumerListener {
        private final static Logger logger = LoggerFactory.getLogger(SimpleConsumerListener.class);
        private final CountDownLatch latch1 = new CountDownLatch(1);

        @KafkaListener(id = "foo", topics = "topic-test")
        public void listen(byte[] records) {
            //do something here
            this.latch1.countDown();
        }
    }

             我们同时也需要将这个类作为一个Bean配置到KafkaConfig中

    @Bean
    public SimpleConsumerListener simpleConsumerListener(){
        return new SimpleConsumerListener();
    }

    默认spring-kafka会为每一个监听方法创建一个线程来向kafka服务器拉取消息

    最后

    任何问题请联系hei12138@outlook.com

     
     
     
    好文要顶 关注我 收藏该文  
    11
    0
     
    推荐成功
     
    « 上一篇:web容器启动后自动执行程序的几种方式比较
    » 下一篇:MyBatis-Spring中间件逻辑分析(怎么把Mapper接口注册到Spring中)
    posted @ 2017-11-08 18:31 嘿123 阅读(52064) 评论(1) 编辑 收藏

     

     
    #1楼 2018-05-10 12:01 | optor  
    最后spring-kafka的例子代码好像有点问题,可能是因为版本的原因。我的版本如下:
    <!-- spring -->
    <dependency>
    <groupId>org.springframework</groupId>
    <artifactId>spring-context</artifactId>
    <version>5.0.6.RELEASE</version>
    </dependency>
    <dependency>
    <groupId>org.springframework</groupId>
    <artifactId>spring-core</artifactId>
    <version>5.0.6.RELEASE</version>
    </dependency>
    <dependency>
    <groupId>org.springframework</groupId>
    <artifactId>spring-beans</artifactId>
    <version>5.0.6.RELEASE</version>
    </dependency>
    <dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
    <version>2.1.6.RELEASE</version>
    </dependency>
    我的代码如下:
    public class SimpleConsumerListener {

    @KafkaListener(id = "foo", topics = "topic-test")
    public void listen(ConsumerRecord record) {
    System.out.println("listen");
    System.out.println(record.key());
    System.out.println(record.value());
    }
    }
    因为这个问题纠结了老半天,贴在这里防止后来人入坑。以后还是要多考虑版本问题啦

  • 相关阅读:
    Iscroll4使用心得 (转)
    请求接口数据实例
    jQuery插件开发全解析(转)
    js中可以改变作用域的三种方式(改变this)
    this基础(转)
    Hash扫盲
    JS编码解码 (转)
    自定义菜单实例
    DOM(转)
    js扫盲
  • 原文地址:https://www.cnblogs.com/zuxiaoyuan/p/9255185.html
Copyright © 2020-2023  润新知