3我理解的高等代数3——线性变换
线性变换
第一节我们介绍了线性空间,他就是一个方格纸。
第二节我们介绍了坐标系变换中,基变换和坐标之间的关系。
接下来让我们考虑在坐标系变换中的变换本身这个东西。
让我们继续回到我们熟悉的情形,让我们重新描述这个过程。
通过一个变换或者说乘以一个矩阵A,我们使得原来的方格纸发生了变化。变化后的结果还是一个方格纸。 原来的一些向量大多数发生了相应的变化,但是有一些向量方向没有发生变化只是长度发生了变化。
我们发现这个变化是有一些特点的,
- 1 就是变化后并没有改变方格纸这个基本形状。按着数学的语言描述,那就是这个变换使得一个线性空间变成了一个新的线性空间。
- 2 整个变换对于原来的向量之间的对应关系是没有发生变化的。用数学的语言描述就是 它保持了原来元素的加法和数量乘法。
其实,这个变换就是一个特殊的映射,是一个满足上述两条性质的特殊的映射。
线性变换空间
那么我们可以得到很多具有上面性质的变换,我们如果把每一个变换记一个数学符号,比如\(\mathscr{A},\mathscr{B},\cdots\)
我们想,这些元素是不是也符合线性空间的要求,组成一个线性空间。事实上,这个变换时能够组成线性空间的。
既然是一个线性空间,那么就能得到这个空间的零元素和单位元。我们一般记为\(0,\epsilon\)
同时我们还可以在这些元素的基础上定义运算,乘法,加法,数乘,逆变换。多形式运算。
线性变换与向量的像
我们说,线性变换是一个特殊的映射,那么对于集合A(也就是定义域)在集合B(也就是值域)都会有一个元素与之对应。
我们设有一组基为\([i,j]\),那我们记变换前的元素为\(a\),其坐标在基\([i,j]\)下的坐标为\((x_1,x_2)\) ,
,那么变换后的元素\(\mathcal{A}a\)在基\([i,j]\)下的坐标\((y_1,y_2)\)就有这样的一个对应关系
线性变换与基
在一组基下,我们能够描述一个线性变换,这样的一个变换对应着一个矩阵
那么我们接下来想问一个问题,如果换一组基,这个变换会是怎样的形式,它和原来的基下的变换有什么关系。
首先我们有两组基,不妨记为 \([\varepsilon_1,\varepsilon_2]\)和\([\eta_1,\eta_2]\)
然后我们有一个从基 \([\varepsilon_1,\varepsilon_2]\)到基的\([\eta_1,\eta_2]\)过渡矩阵是\(X\)。
这里再让我们回顾一下过渡矩阵,这个过渡矩阵其实就是新的基\([\eta_1,\eta_2]\)在原来的基下\([\varepsilon_1,\varepsilon_2]\)面的坐标\((a,b),(c,d)\),我们把这个坐标放在一起组成了一个矩阵\(X\)
\[X = \left( \begin{array}{1} a, & c\\ b , &d \end{array} \right ) \]这个矩阵第一列的元素是新基\(\eta_1\)在下\([\varepsilon_1,\varepsilon_2]\)的坐标,第二列的元素是新基\(\eta_2\)的在下的坐\([\varepsilon_1,\varepsilon_2]\)标
我们有\([\eta_1,\eta_2]=[\varepsilon_1,\varepsilon_2]X\)
然后我们来看一下这两个变换,用矩阵形式表示有
我们知道变换会保持原来元素的关系,于是变换后我们仍然有
用矩阵形式表示就是
我们将基从基 \([\varepsilon_1,\varepsilon_2]\)到基的\([\eta_1,\eta_2]\)过渡矩阵\(X\) 的对应关系\([\eta_1,\eta_2]=[\varepsilon_1,\varepsilon_2]X\)带入得到
可以得到
整个过程的推导关键在于,基向量通过线性变换后仍然存在着过渡矩阵的一个变化关系。
相似
如果两个矩阵有着我们上面推导出的关系 ,即
设\(A、B\)是数域\(P\)上两个\(n\)级矩阵,如果可以找到数域\(P\)上的\(n\)级可逆矩阵\(X\),使得\(B=X^{-1}AX\),就说\(A\)相似于\(B\),记作\(A \sim B\)