• 补码来源


    摘自:https://www.douban.com/note/223507364/

    关于补码,看过一些书籍和网文,基本都是在“求反加一”的方法、步骤上反复强调,而对于补码的本质和定义,讨论的不足。这就对初学者的造成了误导,使得很多人都纠结在-128的补码求取过程中。
    关于反码和原码,大家都是在郑重其事的讲解,其实,学过的人都知道,它们的重要性是 0 !
    做而论道把自己对于补码的认识写在下面,但愿对读者有些帮助。

    加法器
    计算机里面,只有加法器,没有减法器,所有的减法运算,都必须用加法进行。
    即:减去某个数字(或者说加上某个负数)的运算,都应该研究如何用加法来完成。

    模、补数
    在日常生活当中,可以看到很多这样的事情:
    把某物体左转 90 度,和右转 270 度,在不考虑圈数的条件下,最终的效果是相同的;
    把分针倒拨 20 分钟,和正拨 40 分钟,在不考虑时针的条件下,效果也是相同的;
    把数字 87,减去 25,和加上 75,在不考虑百位数的条件下,效果也是相同的;
    ……。
    上述几组数字,有这样的关系:
      90 + 270 = 360
      20 + 40 = 60
      25 + 75 = 100
    式中的 360、60 和 100,就是“模”。
    式中的 90 和 270、20 和 40,以及 25 和 75,就是一对对“互补”的数字。

    知道了“模”,求某个数字的“补数”,就是轻而易举的了:
    如果模为 365,数字 120 的补数为:365 - 120 = 245。

    用补数代替原数,可把减法转变为加法。出现的进位就是模,此时的进位,就应该忽略不计。

    二进制数的模
    前面说过的十进制数 25 和 75,它们是 2 位数的运算,模是 100,即 1 的后面加上 2 个 0。
    如果有 3 位数参加运算,模就是 1000,即 1 的后面加上 3 个 0。
    这里的 1000,是十进制数的一千,可以写成 10^3,即 10 的 3 次方。
    推论:有多少位数参加运算,模就是在 1 的后面加上多少个 0。

    对于二进制数字,模也是这样推算。
    如果是 3 位二进制数参加运算,模就是 1000,即 1 的后面加上 3 个 0;
    那么当 8 位二进制数参加运算,模就是 1 0000 0000,即 1 的后面加上 8 个 0。
    16 位二进制数参加运算,模可就大了,是 1 的后面加上 16 个 0。
    注意:这里提到的 1、0,都是二进制数。
    8 位二进制数的模可以按照十进制写成 2^8,即 256。
    16 位数二进制数的模,就是 2^16,按照十进制,它就是 65536。

    二进制数的补码
    求二进制数的补数,目的是往计算机里面存放。
    在计算机里面,存放的数字什么的,都称为机器码;那么二进制形式的补数,也就改称为补码了。
    一般情况下,都是以 8 位二进制数来讨论补码,少数也有用 16 位数的。

    计算时加上正数,是不需要进行求取补数的;只有进行减法(或者加上负数),才需要对减数求补数。
    补码就是按照这个要求来定义的:正数不变,负数即用模减去绝对值。

    已知一个数 X,其 8 位字长的补码定义为:

          / X 0 <= X <= +127 ;正数和0的补码,就是该数字本身
      [X]补 = |
           2^8 -|X| -128 <= X < 0 ;负数的补码,就是用 1 0000 0000,减去该数字的绝对值

    例如 X = -126,其补码为 1000 0010,计算方法如下:

        1 0000 0000
       - 0111 1110
     -----------
         1000 0010

    可以看出,按照补码的定义来求补码,概念十分清晰,方法、步骤也是十分简单的。

    应用补码进行计算
    用补码计算:83-25=58。

        83  ---都变成补码,再用加法运算-->  0101 0011
      - 25  -> 1 0000 0000 - 0001 1001-> + 1110 0111
     -----          --------
        58  <--忽略进位1,结果就是正确的--[1] 0011 1010

    计算结果如果超出了-128~+127的范围,结果将是错误的,这是没有办法纠正的。

    应用补码进行计算,完全符合前面介绍的“用补数可把减法转换成加法”的做法,只要忽略进位(这个进位1,就是求补的时候,加进去的1 0000 0000中的1),结果就是正确的。

    这些关于补数、补码的定义、方法、步骤,读者如果看懂了前面的文字,相信大家自己都可以总结出来。
    那么为什么总有些网友要提出关于求取补码的问题呢?
    在做而论道看来,就是因为很多教材和网文都在这个问题上“画蛇添足”。

    关于补码的蛇足
    补码出现后,后人又补充了不少“蛇足”:符号位、求反加一、原码、反码......。
    下面的表格给出了一些 8 位数的补码。

     





    --符号位
    从这个表格中,可以看出特点:正数的最高位都是0,负数的最高位都是1。
    这样一来,有人就把最高位理解成了符号位。说什么是规定的用0代表正号,......。并且郑重其事的补充说明:“符号位也参加运算”。真能忽悠!卖拐、卖车的都甘拜下风。
    其实,前面说过的 补数 和 补码的定义式 里面,根本就没有什么符号位。这最高位的1、0是自然出现的,并不是由人来规定的。
    --求反加一
    负数补码的后面七位,也可以看出一个不完全的规律:它们和绝对值之间存在着“求反加一”的关系。
    于是,又有人推出了这个不同于定义式的算法。
    --原码和反码
    由于使用“求反加一”来求取补码,顺便又引出了 原码 和 反码 两个垃圾概念。

    其实,“求反加一”的计算方法只是适用于计算二进制形式的补数,它并不是通用的。
    并且把“求反加一”用于求-128的补码,有个溢出的现象,很多人都在这里被弄瘸了很长时间。
    原码和反码也只不过是“人工”进行“求反加一”时的中间过程,在计算机里面根本是不存在的,它们也就没有丝毫用处。

    求取补码,就按照定义的规定,负数采用“模减去绝对值”的方法来求,这是求补数的通用方法,适合于各种进制、各种大小的数字。
    不要用求反加一的方法,也就不用理会原码和反码了,也不牵涉符号位的问题。
    以后的计算,也就没有必要特殊说明:“符号位一起参加运算...”,因为根本就没有什么符号位。

    如果把原码和反码、符号位等等垃圾概念,从计算机的书中删减掉,学习补码将会省力不少。

    文章评论:

    初看之下,写的十分合理,但是仔细推敲的话我发现楼主似乎忽略了一个重要的问题: 

    例如 X = -126,其补码为 1000 0010,计算方法如下: 

        1 0000 0000 
       - 0111 1110 
     ----------- 
         1000 0010 

    但是计算机是不能做减法的! 
    如果不用求反加一的方法,是怎么获得补码的呢?

  • 相关阅读:
    Python入门基础知识点(基础数据类型之字典)
    Python入门基础知识点(基础数据类型之二)
    Python入门基础知识点(基础数据类型)
    Python入门基础知识点(循环语句和编码)
    Python入门基础知识点(基础语法介绍)
    接口继承
    类的继承
    类的组合
    静态属性、类方法、静态方法
    类与对象属性的操作
  • 原文地址:https://www.cnblogs.com/zuochengsi-9/p/8461253.html
Copyright © 2020-2023  润新知