torch.nn
(1)用于搭建网络结构的序列容器:torch.nn.Sequential
models = torch.nn.Sequential( torch.nn.Linear(input_data, hidden_layer), torch.nn.ReLU(), torch.nn.Linear(hidden_layer, output_data) ) from collections import OrderedDict # 使用有序字典 使模块有自定义的名次 models2 = torch.nn.Sequential(OrderedDict([ ("Line1",torch.nn.Linear(input_data, hidden_layer)), ("ReLu1",torch.nn.ReLU()), ("Line2",torch.nn.Linear(hidden_layer, output_data))]) )
(2)线性层:torch.nn.Linear
(3)激活函数:torch.nn.ReLU
(4)损失函数:torch.nn.MSELoss(均方误差函数),troch.nn.L1Loss(平均绝对误差函数),torch.nn.CrossEntropyLoss(交叉熵)
import torch from torch.autograd import Variable batch_n = 100 hidden_layer = 100 input_data = 1000 output_data = 10 x = Variable(torch.randn(batch_n, input_data), requires_grad=False) # x封装为节点,设置为不自动求导 y = Variable(torch.randn(batch_n, output_data), requires_grad=False) models = torch.nn.Sequential( torch.nn.Linear(input_data, hidden_layer), torch.nn.ReLU(), torch.nn.Linear(hidden_layer, output_data) ) # from collections import OrderedDict # 使用有序字典 使模块有自定义的名次 # models2 = torch.nn.Sequential(OrderedDict([ # ("Line1",torch.nn.Linear(input_data, hidden_layer)), # ("ReLu1",torch.nn.ReLU()), # ("Line2",torch.nn.Linear(hidden_layer, output_data))]) # ) epoch_n = 10000 learning_rate = 0.0001 loss_fn = torch.nn.MSELoss() for epoch in range(epoch_n): y_pred = models(x) loss = loss_fn(y_pred,y) if epoch%1000 == 0: print("Epoch:{},Loss:{:4f}".format(epoch,loss.data[0])) models.zero_grad() # 梯度归零 loss.backward() for param in models.parameters(): # 遍历节点参数更新 param.data -= param.grad.data*learning_rate
torch.optim包
参数自动优化类:SGD,AdaGrad,RMSProp,Adam
import torch from torch.autograd import Variable batch_n = 100 hidden_layer = 100 input_data = 1000 output_data =10 x = Variable(torch.randn(batch_n, input_data), requires_grad=False) y = Variable(torch.randn(batch_n, output_data), requires_grad=False) models = torch.nn.Sequential( torch.nn.Linear(input_data,hidden_layer), torch.nn.ReLU(), torch.nn.Linear(hidden_layer,output_data) ) epoch_n = 20 learning_rate = 0.0001 loss_fn = torch.nn.MSELoss() optimzer = torch.optim.Adam(models.parameters(), lr=learning_rate) # torch.optim.Adam对梯度更新使用到的学习率进行自适应调节 for epoch in range(epoch_n): y_pred = models(x) loss = loss_fn(y_pred,y) print("Eproch:{},Loss:{:4f}".format(epoch,loss.data[0])) optimzer.zero_grad() # 参数梯度归零 loss.backward() optimzer.step() # 节点参数更新