矩阵快速幂。
因为任意素数长度都要满足,所以$3$必须满足,$3$一旦满足,其余的肯定满足,也就是说只要考虑字符串末尾两位即可,$dp$一下就可以算方案数了。$n$较大,可以矩阵加速。
#include <bits/stdc++.h> using namespace std; const long long mod=1e9+7; const long long inf=1e18; int T; long long n; struct Matrix { long long A[5][5]; int R, C; Matrix operator*(Matrix b); }; Matrix X, Y, Z; Matrix Matrix::operator*(Matrix b) { Matrix c; memset(c.A, 0, sizeof(c.A)); int i, j, k; for (i = 1; i <= R; i++) for (j = 1; j <= C; j++) for (k = 1; k <= C; k++) c.A[i][j] = (c.A[i][j] + (A[i][k] * b.A[k][j])%mod)%mod; c.R=R; c.C=b.C; return c; } void init() { n = n - 2; memset(X.A,0,sizeof X.A); memset(Y.A,0,sizeof Y.A); memset(Z.A,0,sizeof Z.A); Z.R = 1; Z.C = 3; Z.A[1][1]=1; Z.A[1][2]=1; Z.A[1][3]=1; for(int i=1;i<=3;i++) Y.A[i][i]=1; Y.R = 3; Y.C = 3; X.A[1][1]=1; X.A[1][2]=0; X.A[1][3]=1; X.A[2][1]=1; X.A[2][2]=0; X.A[2][3]=0; X.A[3][1]=0; X.A[3][2]=1; X.A[3][3]=0; X.R = 3; X.C = 3; } void work() { while (n) { if (n % 2 == 1) Y = Y*X; n = n >> 1; X = X*X; } Z = Z*Y; printf("%lld ", (Z.A[1][1]+Z.A[1][2]+Z.A[1][3])%mod); } int main() { scanf("%d",&T); while(T--) { scanf("%lld",&n); init(); work(); } return 0; }