最小割+输出方案
#include<cstdio> #include<cstring> #include<string> #include<cmath> #include<vector> #include<queue> #include<algorithm> using namespace std; const int maxn=1000+10; const int INF=0x7FFFFFFF; struct Edge { int from,to,cap,flow; }; vector<Edge>edges; vector<int>G[maxn]; vector<int>CG[maxn]; bool vis[maxn]; int d[maxn]; int cur[maxn]; int n,m,s,t; Edge P[maxn]; //求出层次网络 bool BFS() { memset(vis,0,sizeof(vis)); queue<int>Q; Q.push(s); d[s]=0; vis[s]=1; while(!Q.empty()) { int x=Q.front(); Q.pop(); for(int i=0; i<G[x].size(); i++) { Edge& e=edges[G[x][i]]; if(!vis[e.to]&&e.cap>e.flow) { vis[e.to]=1; d[e.to]=d[x]+1; Q.push(e.to); } } } return vis[t]; } //加边 void AddEdge(int from,int to,int cap) { Edge r; r.from=from; r.to=to; r.cap=cap; r.flow=0; edges.push_back(r); Edge d; d.from=to; d.to=from; d.cap=0; d.flow=0; edges.push_back(d); m=edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } //每个阶段来一次DFS增广 int DFS(int x,int a) { if(x==t||a==0) return a; int flow=0,f; for(int i=cur[x]; i<G[x].size(); i++) { Edge& e=edges[G[x][i]]; if(d[x]+1==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>0) { e.flow+=f; edges[G[x][i]^1].flow-=f; flow+=f; a-=f; if(a==0) break; } } return flow; } //多个阶段,多次建立层次网络。 int Maxflow(int ss,int tt) { int flow=0; while(BFS()) { memset(cur,0,sizeof(cur)); flow+=DFS(ss,INF); } return flow; } int N,M,Cost; int U[maxn],V[maxn]; int FF[maxn]; void dfs(int x) { FF[x]=1; for(int i=0; i<CG[x].size(); i++) if(!FF[CG[x][i]]) dfs(CG[x][i]); } int main() { while(~scanf("%d%d",&N,&M)) { if(!N&&!M) break; edges.clear(); for(int i=0; i<maxn; i++) G[i].clear(); for(int i=0; i<maxn; i++) CG[i].clear(); memset(FF,0,sizeof FF); s=1; t=2; for(int i=1; i<=M; i++) { scanf("%d%d%d",&U[i],&V[i],&Cost); AddEdge(U[i],V[i],Cost); AddEdge(V[i],U[i],Cost); } Maxflow(s,t); int Tot=0; for(int i=0; i<edges.size(); i=i+2) { P[Tot].from=edges[i].from; P[Tot].to=edges[i].to; P[Tot].cap=edges[i].cap; P[Tot].flow=edges[i].flow; Tot++; } for(int i=0; i<Tot; i++) { if(P[i].cap-P[i].flow>0) CG[P[i].from].push_back(P[i].to); if(P[i].flow>0) CG[P[i].to].push_back(P[i].from); } dfs(s); for(int i=1; i<=M; i++) if((FF[U[i]]==0&&FF[V[i]]==1)||(FF[V[i]]==0&&FF[U[i]]==1)) printf("%d %d ",U[i],V[i]); printf(" "); } return 0; }