• 类欧几里得算法学习笔记


    如何求(sum_{i=0}^ni^{k1}lfloorfrac{ai+b}{c} floor^{k2})((1leqslant n,a,b,cleqslant10^9,k1+k2leqslant 10))

    (f(n,a,b,c)[k1][k2])表示原式的值,则:

    (ageqslant c),设(a=pc+q(0leqslant q<c)),则

    [egin{align} &;;;;;f(n,a,b,c)[k1][k2]\ &=sum_{i=0}^ni^{k1}lfloorfrac{ai+b}{c} floor^{k2}\ &=sum_{i=0}^ni^{k1}(pi+lfloorfrac{qi+b}{c} floor)^{k2}\ &=sum_{i=0}^ni^{k1}sum_{j=0}^{k2} ext{C}_{k2}^jp^ji^jlfloorfrac{qi+b}{c} floor^{k2-j}\ &=sum_{j=0}^{k2} ext{C}_{k2}^jp^jsum_{i=0}^ni^{k1+j}lfloorfrac{qi+b}{c} floor^{k2-j}\ &=sum_{j=0}^{k2} ext{C}_{k2}^jp^jf(n,q,b,c)[k1+j][k2-j] end{align}]

    只需递归计算(f(n,q,b,c))(O(k^3))处理即可。

    (bgeqslant c),设(b=pc+q(0leqslant q<c)),则

    [egin{align} &;;;;;f(n,a,b,c)[k1][k2]\ &=sum_{i=0}^ni^{k1}lfloorfrac{ai+b}{c} floor^{k2}\ &=sum_{i=0}^ni^{k1}(p+lfloorfrac{ai+q}{c} floor)^{k2}\ &=sum_{i=0}^ni^{k1}sum_{j=0}^{k2} ext{C}_{k2}^jp^jlfloorfrac{ai+q}{c} floor^{k2-j}\ &=sum_{j=0}^{k2} ext{C}_{k2}^jp^jsum_{i=0}^ni^{k1}lfloorfrac{ai+q}{c} floor^{k2-j}\ &=sum_{j=0}^{k2} ext{C}_{k2}^jp^jf(n,a,q,c)[k1][k2-j] end{align}]

    只需递归计算(f(n,a,q,c))(O(k^3))处理即可。

    (c>a)(c>b),则有:

    [egin{align} &;;;;;f(n,a,b,c)[k1][k2]\ &=sum_{i=0}^ni^{k1}sum_{j=0}^{lfloorfrac{ai+b}{c} floor-1}((j+1)^{k2}-[j eq0]j^{k2})\ &=sum_{j=0}^{lfloorfrac{an+b}{c} floor-1}((j+1)^{k2}-[j eq0]j^{k2})sum_{i=0}^n[j<lfloorfrac{ai+b}{c} floor]i^{k1}\ end{align}]

    [egin{align} &;;;;;j<lfloorfrac{ai+b}{c} floor\ &Leftrightarrow j+1leqslantlfloorfrac{ai+b}{c} floor\ &Leftrightarrow jc+cleqslant ai+b\ &Leftrightarrow jc+c-b-1<ai\ &Leftrightarrow lfloorfrac{jc+c-b-1}{a} floor<i end{align}]

    于是,设(T_{i,j})(sum_{w=0}^{x}w^i)的多项式表达式的(j)次项系数

    [egin{align} &;;;;;f(n,a,b,c)[k1][k2]\ &=sum_{j=0}^{lfloorfrac{an+b}{c} floor-1}((j+1)^{k2}-[j eq0]j^{k2})sum_{i=0}^n[i>lfloorfrac{jc+c-b-1}{a} floor]i^{k1}\ &=sum_{j=0}^{lfloorfrac{an+b}{c} floor-1}((j+1)^{k2}-[j eq0]j^{k2})(sum_{i=0}^ni^{k1}-sum_{i=0}^{lfloorfrac{jc+c-b-1}{a} floor}i^{k1})\ &=lfloorfrac{an+b}{c} floor^{k2}sum_{i=0}^ni^{k1}-sum_{j=0}^{lfloorfrac{an+b}{c} floor-1}sum_{p=0}^{k2-1}sum_{q=0}^{k1+1} ext{C}_{k2}^{p}T_{k1,q}j^plfloorfrac{jc+c-b-1}{a} floor^q\ &=lfloorfrac{an+b}{c} floor^{k2}sum_{i=0}^ni^{k1}-sum_{p=0}^{k2-1}sum_{q=0}^{k1+1} ext{C}_{k2}^{p}T_{k1,q}sum_{j=0}^{lfloorfrac{an+b}{c} floor-1}j^plfloorfrac{jc+c-b-1}{a} floor^q\ &=lfloorfrac{an+b}{c} floor^{k2}sum_{i=0}^ni^{k1}-sum_{p=0}^{k2-1}sum_{q=0}^{k1+1} ext{C}_{k2}^{p}T_{k1,q}f(lfloorfrac{an+b}{c} floor-1,c,c-b-1,a)[p][q] end{align}]

    只需递归计算(f(lfloorfrac{an+b}{c} floor-1,c,c-b-1,a))(O(k^4))处理即可。

    (a=0)(n)很小时可直接计算。

  • 相关阅读:
    Flask从入门到入土
    flask请求上下文源码分析
    python事件调度库sched
    go中简单使用kafka
    python下使用ElasticSearch
    numpy+pandas+matplotlib+tushare股票分析
    functools模块中partial的使用
    乐观锁与悲观锁
    mysql的服务器构成
    redis事件监听及在订单系统中的使用
  • 原文地址:https://www.cnblogs.com/ztc03/p/11973996.html
Copyright © 2020-2023  润新知