• MapReduce编程(一) Intellij Idea配置MapReduce编程环境


    介绍怎样在Intellij Idea中通过创建mavenproject配置MapReduce的编程环境。

    一、软件环境

    我使用的软件版本号例如以下:

    1. Intellij Idea 2017.1
    2. Maven 3.3.9
    3. Hadoop伪分布式环境( 安装教程可參考这里)

    二、创建mavenproject

    打开Idea,file->new->Project,左側面板选择mavenproject。(假设仅仅跑MapReduce创建javaproject就可以,不用勾选Creat from archetype,假设想创建webproject或者使用骨架能够勾选)
    这里写图片描写叙述
    设置GroupId和ArtifactId。下一步。


    这里写图片描写叙述
    设置project存储路径。下一步。
    这里写图片描写叙述
    Finish之后,空白project的路径例如以下图所看到的。

    这里写图片描写叙述

    完整的project路径例如以下图所看到的:
    这里写图片描写叙述

    三、加入maven依赖

    在pom.xml加入依赖。对于hadoop 2.7.3版本号的hadoop,须要的jar包有下面几个:

    • hadoop-common
    • hadoop-hdfs
    • hadoop-mapreduce-client-core
    • hadoop-mapreduce-client-jobclient
    • log4j( 打印日志)

      pom.xml中的依赖例如以下:

        <dependencies>
            <dependency>
                <groupId>junit</groupId>
                <artifactId>junit</artifactId>
                <version>4.12</version>
                <scope>test</scope>
            </dependency>
    
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-common</artifactId>
                <version>2.7.3</version>
            </dependency>
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-hdfs</artifactId>
                <version>2.7.3</version>
            </dependency>
    
    
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-mapreduce-client-core</artifactId>
                <version>2.7.3</version>
            </dependency>
    
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
                <version>2.7.3</version>
            </dependency>
    
            <dependency>
                <groupId>log4j</groupId>
                <artifactId>log4j</artifactId>
                <version>1.2.17</version>
            </dependency>
        </dependencies>

    四、配置log4j

    src/main/resources目录下新增log4j的配置文件log4j.properties。内容例如以下:

    log4j.rootLogger = debug,stdout
    
    ### 输出信息到控制抬 ###
    log4j.appender.stdout = org.apache.log4j.ConsoleAppender
    log4j.appender.stdout.Target = System.out
    log4j.appender.stdout.layout = org.apache.log4j.PatternLayout
    log4j.appender.stdout.layout.ConversionPattern = [%-5p] %d{yyyy-MM-dd HH:mm:ss,SSS} method:%l%n%m%n
    

    五、启动Hadoop

    启动Hadoop,执行命令:

    cd hadoop-2.7.3/
    ./sbin/start-all.sh

    訪问http://localhost:50070/查看hadoop是否正常启动。

    六、执行WordCount(从本地读取文件)

    在project根目录下新建input目录,input目录下新增dream.txt,随便写入一些单词:

    I have a  dream
    a dream

    在src/main/java目录下新建包。新增FileUtil.java,创建一个删除output文件的函数,以后就不用手动删除了。内容例如以下:

    package com.mrtest.hadoop;
    
    import java.io.File;
    
    /**
     * Created by bee on 3/25/17.
     */
    public class FileUtil {
    
        public static boolean deleteDir(String path) {
            File dir = new File(path);
            if (dir.exists()) {
                for (File f : dir.listFiles()) {
                    if (f.isDirectory()) {
                        deleteDir(f.getName());
                    } else {
                        f.delete();
                    }
                }
                dir.delete();
                return true;
            } else {
                System.out.println("文件(夹)不存在!");
                return false;
            }
        }
    
    }

    编写WordCount的MapReduce程序WordCount.java,内容例如以下:

    package com.mrtest.hadoop;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    import java.io.IOException;
    import java.util.Iterator;
    import java.util.StringTokenizer;
    
    /**
     * Created by bee on 3/25/17.
     */
    public class WordCount {
    
    
        public static class TokenizerMapper extends
                Mapper<Object, Text, Text, IntWritable> {
    
    
            public static final IntWritable one = new IntWritable(1);
            private Text word = new Text();
    
            public void map(Object key, Text value, Context context)
                    throws IOException, InterruptedException {
                StringTokenizer itr = new StringTokenizer(value.toString());
                while (itr.hasMoreTokens()) {
                    this.word.set(itr.nextToken());
                    context.write(this.word, one);
                }
            }
    
        }
    
        public static class IntSumReduce extends
                Reducer<Text, IntWritable, Text, IntWritable> {
            private IntWritable result = new IntWritable();
    
            public void reduce(Text key, Iterable<IntWritable> values,
                               Context context)
                    throws IOException, InterruptedException {
                int sum = 0;
                IntWritable val;
                for (Iterator i = values.iterator(); i.hasNext(); sum += val.get()) {
                    val = (IntWritable) i.next();
                }
                this.result.set(sum);
                context.write(key, this.result);
            }
        }
    
        public static void main(String[] args)
                throws IOException, ClassNotFoundException, InterruptedException {
    
            FileUtil.deleteDir("output");
            Configuration conf = new Configuration();
    
            String[] otherArgs = new String[]{"input/dream.txt","output"};
            if (otherArgs.length != 2) {
                System.err.println("Usage:Merge and duplicate removal <in> <out>");
                System.exit(2);
            }
    
            Job job = Job.getInstance(conf, "WordCount");
            job.setJarByClass(WordCount.class);
            job.setMapperClass(WordCount.TokenizerMapper.class);
            job.setReducerClass(WordCount.IntSumReduce.class);
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
            FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
            FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
            System.exit(job.waitForCompletion(true) ? 0 : 1);
        }
    }
    

    执行完成以后。会在project根目录下添加一个output目录。打开output/part-r-00000,内容例如以下:

    I   1
    a   2
    dream   2
    have    1

    这里在main函数中新增了一个String类型的数组,假设想用main函数的args数组接受參数。在执行时指定输入和输出路径也是能够的。执行WordCount之前,配置Configuration并指定Program arguments就可以。
    这里写图片描写叙述


    七、执行WordCount(从HDFS读取文件)

    在HDFS上新建目录:

    hadoop fs -mkdir /worddir

    假设出现Namenode安全模式导致的不能创建目录提示:

    mkdir: Cannot create directory /worddir. Name node is in safe mode.

    执行下面命令关闭safe mode:

    hadoop dfsadmin -safemode leave

    上传本地文件:

    hadoop fs -put dream.txt /worddir

    改动otherArgs參数,指定输入为文件在HDFS上的路径:

    String[] otherArgs = new String[]{"hdfs://localhost:9000/worddir/dream.txt","output"};

    八、代码下载

    代码下载地址:http://download.csdn.net/detail/napoay/9799523

  • 相关阅读:
    使用json-lib进行Java和JSON之间的转换
    ajax+json+java
    了解Json
    Ehcache RIM
    利用FreeMarker静态化网页
    Timer和TimerTask
    windows下memcache安装
    mac下安装YII
    php static 和self区别
    YII behaviors使用
  • 原文地址:https://www.cnblogs.com/zsychanpin/p/7359842.html
Copyright © 2020-2023  润新知