MAX Average Problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5825 Accepted Submission(s): 1446
Problem Description
Consider a simple sequence which only contains positive integers as a1, a2 ... an, and a number k. Define ave(i,j) as the average value of the sub sequence ai ... aj, i<=j. Let’s calculate max(ave(i,j)), 1<=i<=j-k+1<=n.
Input
There multiple test cases in the input, each test case contains two lines.
The first line has two integers, N and k (k<=N<=10^5).
The second line has N integers, a1, a2 ... an. All numbers are ranged in [1, 2000].
The first line has two integers, N and k (k<=N<=10^5).
The second line has N integers, a1, a2 ... an. All numbers are ranged in [1, 2000].
Output
For every test case, output one single line contains a real number, which is mentioned in the description, accurate to 0.01.
Sample Input
10 6 6 4 2 10 3 8 5 9 4 1
Sample Output
6.50
直接斜率DP:O(N)
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <string> #include <queue> #include <algorithm> #include <cmath> #include <map> #include <iomanip> #define INF 99999999 typedef long long LL; using namespace std; const int MAX=100000+10; int n,k; int s[MAX],q[MAX]; double dp[MAX],sum[MAX]; double GetY(int i,int j){ return sum[i]-sum[j]; } int GetX(int i,int j){ return i-j; } double DP(){ int head=0,tail=1; q[head]=0; double ans=0; for(int i=1;i<=n;++i)sum[i]=sum[i-1]+s[i]*1.0; for(int i=k;i<=n;++i){ int j=i-k; while(head+1<tail && GetY(j,q[tail-1])*GetX(q[tail-1],q[tail-2])<=GetY(q[tail-1],q[tail-2])*GetX(j,q[tail-1]))--tail; q[tail++]=j; while(head+1<tail && GetY(i,q[head])*GetX(i,q[head+1])<=GetY(i,q[head+1])*GetX(i,q[head]))++head; dp[i]=(sum[i]-sum[q[head]])/(i-q[head]); ans=max(ans,dp[i]); } return ans; } int input(){//加速外挂 char ch=' '; int num=0; while(ch<'0' || ch>'9')ch=getchar(); while(ch>='0' && ch<='9')num=num*10+ch-'0',ch=getchar(); return num; } int main(){ while(~scanf("%d%d",&n,&k)){ for(int i=1;i<=n;++i)s[i]=input(); printf("%0.2lf ",DP()); } return 0; } 斜率DP+二分查找: #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <string> #include <queue> #include <algorithm> #include <cmath> #include <map> #include <iomanip> #define INF 99999999 typedef long long LL; using namespace std; const int MAX=100000+10; int n,k; int s[MAX],q[MAX]; LL sum[MAX]; LL GetY(int i,int j){ return sum[i]-sum[j]; } int GetX(int i,int j){ return i-j; } LL check(int mid,int i){ return GetY(i,q[mid+1])*GetX(q[mid+1],q[mid])-GetY(q[mid+1],q[mid])*GetX(i,q[mid+1]); } int search(int l,int r,int i){ //由于斜率单调递增 /*int top=r; while(l<=r){//依据i与mid的斜率 和 i与mid+1的斜率之差求切点 if(l == r && l == top)return q[l];//这里一定要注意假设切点是最后一个点须要另判,由于mid+1不存在会出错 int mid=(l+r)>>1; if(check(mid,i)<0)r=mid-1; else l=mid+1; }*/ while(l<r){//依据i与mid的斜率 和 i与mid+1的斜率之差求切点 int mid=(l+r)>>1; if(check(mid,i)<0)r=mid; else l=mid+1; } return q[l]; } double DP(){ int head=0,tail=1,p; q[head]=0; double ans=0,dp; for(int i=1;i<=n;++i)sum[i]=sum[i-1]+s[i]; for(int i=k;i<=n;++i){ int j=i-k; while(head+1<tail && GetY(j,q[tail-1])*GetX(q[tail-1],q[tail-2])<=GetY(q[tail-1],q[tail-2])*GetX(j,q[tail-1]))--tail; q[tail++]=j; p=search(head,tail-1,i);//依据相邻点与i点的斜率之差二分查找切点 dp=(sum[i]-sum[p])*1.0/(i-p); if(dp>ans)ans=dp; } return ans; } int input(){//加速外挂 char ch=' '; int num=0; while(ch<'0' || ch>'9')ch=getchar(); while(ch>='0' && ch<='9')num=num*10+ch-'0',ch=getchar(); return num; } int main(){ while(~scanf("%d%d",&n,&k)){ for(int i=1;i<=n;++i)s[i]=input(); printf("%0.2lf ",DP()); } return 0; }