• Android binder学习一:主要概念


    要看得懂android代码,首先要了解binder机制。binder机制也是android里面比較难以理解的一块,这里记录一下binder的重要概念以及实现。作为备忘。

    部分内容来源于网上,如有侵权。请及时告知。

    1.binder通信机制概述

    binder通信是一种client-server的通信结构,
    1.从表面上来看。是client通过获得一个server的代理接口,对server进行直接调用;
    2.实际上,代理接口中定义的方法与server中定义的方法是一一相应的。
    3.client调用某个代理接口中的方法时,代理接口的方法会将client传递的參数打包成为Parcel对象。
    4.代理接口将该Parcel发送给内核中的binder driver.
    5.server会读取binder driver中的请求数据,假设是发送给自己的。解包Parcel对象,处理并将结果返回;
    6.整个的调用过程是一个同步过程,在server处理的时候,client会block住。

    binder_overview

    2.为什么使用binder通信

    linux中有管道,system V IPC。socket等进程间通信机制,那么为什么在android中使用了一个全新的binder通信机制呢?

    一、可靠性。在移动设备上,通常採用基于Client-Server的通信方式来实现互联网与设备间的内部通信。

    眼下linux支持IPC包含传统的管道,System V IPC。即消息队列/共享内存/信号量,以及socket中仅仅有socket支持Client-Server的通信方式。

    Android系统为开发人员提供了丰富进程间通信的功能接口,媒体播放。传感器。无线传输。

    这些功能都由不同的server来管理。开发都仅仅关心将自己应用程序的client与server的通信建立起来便能够使用这个服务。

    毫无疑问。如若在底层架设一套协议来实现Client-Server通信,添加了系统的复杂性。

    在资源有限的手机 上来实现这样的复杂的环境,可靠性难以保证。

    二、传输性能。

    socket主要用于跨网络的进程间通信和本机上进程间的通信。但传输效率低。开销大。消息队列和管道採用存储-转发方式。即数据先从发送方缓存区复制到内核开辟的一块缓存区中,然后从内核缓存区复制到接收方缓存区。其过程至少有两次拷贝。尽管共享内存无需拷贝,但控制复杂。

    比較各种IPC方式的数据拷贝次数。

    共享内存:0次。Binder:1次。Socket/管道/消息队列:2次。

    IPC 数据拷贝次数
    共享内存 0
    Binder 1
    Socket/管道/消息队列 2

    三、安全性。Android是一个开放式的平台。所以确保应用程序安全是非常重要的。Android对每个安装应用都分配了UID/PID,当中进程的UID是可用来鉴别进程身份。传统的仅仅能由用户在数据包里填写UID/PID,这样不可靠。easy被恶意程序利用。而我们要求由内核来加入可靠的UID。

    基于以上原因,Android须要建立一套新的IPC机制来满足系统对通信方式,传输性能和安全性的要求。这就是Binder。Binder基于Client-Server通信模式,传输过程仅仅需一次拷贝,为发送发加入UID/PID身份,既支持实名Binder也支持匿名Binder,安全性高。

    3.service manager

    顾名思义,service manager就是android以下管理service的一个进程,它本身也是一个service,这里的service和init.rc里面的service有一些区别,init.rc中的service都是一个进程,而这里的service可能不是一个单独的进程。

    每个service在使用之前都必须向SM注冊。每个client要使用service前都应该先向SM查询是否存在这个service。假设存在,则给client返回这个service的handle。以下是sm中main函数的关键代码:

    int main(int argc, char **argv)
    {
        struct binder_state *bs;
    
        bs = binder_open(128*1024);
        if (!bs) {
            ALOGE("failed to open binder driver
    ");
            return -1;
        }
    
        if (binder_become_context_manager(bs)) {
            ALOGE("cannot become context manager (%s)
    ", strerror(errno));
            return -1;
        }
    
        ......
    
        //svcmgr_handle的值为0
        svcmgr_handle = BINDER_SERVICE_MANAGER;
        binder_loop(bs, svcmgr_handler);
    
        return 0;
    }

    在SM中主要做了例如以下工作:

    • 打开binder设备,映射128k的内存到应用空间。
    • 指定 svcmgr_handle的值为0,当client与SM通信时,须要先创建一个handle为0的代理binder。
    • binder_become_context_manager通知binder driver使SM为context manager。
    • binder_loop是一个死循环。里面不停的读binder是否有数据,假设有数据,则解析,对于BR_TRANSACTION,会调用svcmgr_handler来处理。

    • SM维护了一个svclist来存储service的信息。一个新的service须要向SM注冊add到这个列表,而client请求时会在svclist里面查找请求的service。一个service包含两个重要的信息,handle和name。add和get都会依据name来进行匹配。

    以下一个图片能够简单说明SM与binder driver之间的关系:

    0_1302586870XXcI

    由上可知,service在使用前会先作为client向SM注冊。应用若要使用某一个服务。须要先向SM获取该服务的handle,然后通过handle来调用该服务提供的方法。

    4.ProcessState

    ProcessState是以单例模式设计的。每一个进程在使用binder机制通信时,均须要维护一个ProcessState实例来描写叙述当前进程在binder通信时的binder状态。
    ProcessState有例如以下2个主要功能:
    1.创建一个thread,该线程负责与内核中的binder模块进行通信,称该线程为Pool thread。
    2.为指定的handle创建一个BpBinder对象。并管理该进程中全部的BpBinder对象。

    4.1 Pool thread

    在Binder IPC中。全部进程均会启动一个thread来负责与BD(binder driver)来直接通信。也就是不停的读写BD。这个线程的实现主体是一个IPCThreadState对象,以下会介绍这个类型。

    以下是 Pool thread的启动方式:
    ProcessState::self()->startThreadPool();

    4.2 BpBinder获取

    BpBinder主要功能是负责client向BD发送调用请求的数据。它是client端binder通信的核心对象,通过调用transact函数向BD发送调用请求的数据。它的构造函数例如以下:

    BpBinder(int32_t handle);

    通过BpBinder的构造函数发现,BpBinder会将当前通信中server的handle记录下来,当有数据发送时,会通知BD数据的发送目标ProcessState通过例如以下方式来获取BpBinder对象:

    ProcessState::self()->getContextObject(handle);

    在这个过程中,ProcessState会维护一个BpBinder的vector mHandleToObject。每当ProcessState创建一个BpBinder的实例时。回去查询mHandleToObject,假设相应的handle已经有binder指针,那么不再创建。否则创建binder并插入到mHandleToObject中。
    ProcessState创建的BpBinder实例,普通情况下会作为參数构建一个client端的代理接口。这个代理接口的形式为BpINTERFACE,比如在与SM通信时,client会创建一个代理接口BpServiceManager。

    5.IPCThreadState

    IPCThreadState也是以单例模式设计的。因为每一个进程仅仅维护了一个ProcessState实例。同一时候ProcessState仅仅启动一个Pool thread,也就是说每一个进程仅仅会启动一个Pool thread。因此每一个进程则仅仅须要一个IPCThreadState就可以。

    Pool thread的实际内容则为:

    IPCThreadState::self()->joinThreadPool();

    ProcessState中有2个Parcel成员。mIn和mOut,Pool thread会不停的查询BD中是否有数据可读。假设有将其读出并保存到mIn,同一时候不停的检查mOut是否有数据须要向BD发送,假设有,则将其内容写入到BD中,总而言之。从BD中读出的数据保存到mIn,待写入到BD中的数据保存在了mOut中。

    ProcessState中生成的BpBinder实例通过调用IPCThreadState的transact函数来向mOut中写入数据,这种话这个binder IPC过程的client端的调用请求的发送过程就明了了。

    IPCThreadState有两个重要的函数,talkWithDriver函数负责从BD读写数据。executeCommand函数负责解析并运行mIn中的数据。

    0_1302586875vjBC

    6.主要基类

    6.1基类IInterface

    为server端提供接口。它的子类声明了service可以实现的全部的方法。

    6.2基类IBinder

    BBinder与BpBinder均为IBinder的子类,因此能够看出IBinder定义了binder IPC的通信协议。BBinder与BpBinder在这个协议框架内进行的收和发操作,构建了主要的binder IPC机制。

    6.3基类BpRefBase

    client端在查询SM获得所需的的BpBinder后,BpRefBase负责管理当前获得的BpBinder实例。

    7.两个接口类

    7.1 BpINTERFACE

    假设client想要使用binder IPC来通信,那么首先会从SM出查询并获得server端service的BpBinder,在client端。这个对象被觉得是server端的远程代理。为了可以使client可以想本地调用一样调用一个远程server,server端须要向client提供一个接口,client在在这个接口的基础上创建一个BpINTERFACE,使用这个对象,client的应用可以想本地调用一样直接调用server端的方法。而不用去关心详细的binder IPC实现。

    以下看一下BpINTERFACE的原型:

    class BpINTERFACE : public BpInterface<IINTERFACE>

    顺着继承关系再往上看

    template<typename INTERFACE>
    class BpInterface : public INTERFACE, public BpRefBase

    BpINTERFACE分别继承自INTERFACE,和BpRefBase;

    ● BpINTERFACE既实现了service中各方法的本地操作,将每一个方法的參数以Parcel的形式发送给BD。比如BpServiceManager的

    virtual status_t addService(const String16& name, const sp<IBinder>& service)
    {
        Parcel data, reply;
        data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
        data.writeString16(name);
        data.writeStrongBinder(service);
        status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
        return err == NO_ERROR ? reply.readExceptionCode() : err;
    }

    ● 同一时候又将BpBinder作为了自己的成员来管理,将BpBinder存储在mRemote中,BpServiceManager通过调用BpRefBase的remote()来获得BpBinder指针。

    7.2 BnINTERFACE

    在定义android native端的service时,每一个service均继承自BnINTERFACE(INTERFACE为service name)。BnINTERFACE类型定义了一个onTransact函数。这个函数负责解包收到的Parcel并运行client端的请求的方法。

    顺着BnINTERFACE的继承关系再往上看。
    class BnINTERFACE: public BnInterface<IINTERFACE>

    IINTERFACE为client端的代理接口BpINTERFACE和server端的BnINTERFACE的共同接口类,这个共同接口类的目的就是保证service方法在C-S两端的一致性。

    再往上看
    class BnInterface : public INTERFACE, public BBinder

    同一时候我们发现了BBinder类型,这个类型又是干什么用的呢?既然每一个service均可视为一个binder,那么真正的server端的binder的操作及状态的维护就是通过继承自BBinder来实现的。可见BBinder是service作为binder的本质所在。

    那么BBinder与BpBinder的差别又是什么呢?

    事实上它们的差别非常easy,BpBinder是client端创建的用于消息发送的代理,而BBinder是server端用于接收消息的通道。查看各自的代码就会发现,尽管两个类型均有transact的方法。可是两者的作用不同,BpBinder的transact方法是向IPCThreadState实例发送消息,通知其有消息要发送给BD;而BBinder则是当IPCThreadState实例收到BD消息时,通过BBinder的transact的方法将其传递给它的子类BnSERVICE的onTransact函数运行server端的操作。

    8.Parcel

    Parcel是binder IPC中的最主要的通信单元。它存储C-S间函数调用的參数.可是Parcel仅仅能存储主要的数据类型,假设是复杂的数据类型的话,在存储时。须要将其拆分为主要的数据类型来存储。

    简单的Parcel读写不再介绍。以下着重介绍一下2个函数。

    8.1 writeStrongBinder

    当一个service 调用add_service把自己增加到SM中时。就会遇到这样的情况,例如以下(IServiceManager.cpp):

     virtual status_t addService(const String16& name, const sp<IBinder>& service,
                bool allowIsolated)
        {
            Parcel data, reply;
            data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
            data.writeString16(name);
            data.writeStrongBinder(service);
            data.writeInt32(allowIsolated ? 1 : 0);
            status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
            return err == NO_ERROR ?

    reply.readExceptionCode() : err; }

    当中writeStrongBinder(Parcel.cpp)例如以下:

    status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
    {
        return flatten_binder(ProcessState::self(), val, this);
    }

    接着看flatten_binder:

    status_t flatten_binder(const sp<ProcessState>& /*proc*/,
        const sp<IBinder>& binder, Parcel* out)
    {
        flat_binder_object obj;
    
        obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
        if (binder != NULL) {
            IBinder *local = binder->localBinder();
            if (!local) {
                BpBinder *proxy = binder->remoteBinder();
                if (proxy == NULL) {
                    ALOGE("null proxy");
                }
                const int32_t handle = proxy ? proxy->handle() : 0;
                obj.type = BINDER_TYPE_HANDLE;
                obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
                obj.handle = handle;
                obj.cookie = 0;
            } else {
                obj.type = BINDER_TYPE_BINDER;
                obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs());
                obj.cookie = reinterpret_cast<uintptr_t>(local);
            }
        } else {
            obj.type = BINDER_TYPE_BINDER;
            obj.binder = 0;
            obj.cookie = 0;
        }
    
        return finish_flatten_binder(binder, obj, out);
    }

    addService的參数为一个BnINTERFACE类型指针。BnINTERFACE又继承自BBinder:

    BBinder* BBinder::localBinder()
        {
            return this;
        }

    所以写入到Parcel的binder类型为BINDER_TYPE_BINDER。在SM中,当service的binder类型不为BINDER_TYPE_HANDLE时,SM将不会将此service加入到svclist,可是非常显然每一个service的加入都是成功的,addService在開始传递的binder类型为BINDER_TYPE_BINDER,SM收到的binder类型为BINDER_TYPE_HANDLE。那么这个过程其中到底发生了什么?这个问题是这种,在binder driver中(Binder.c)由下面代码:

    static void binder_transaction(struct binder_proc *proc,
                       struct binder_thread *thread,
                       struct binder_transaction_data *tr, int reply)
    {
    ..........................................
    
        if (fp->type == BINDER_TYPE_BINDER)
            fp->type = BINDER_TYPE_HANDLE;
        else
            fp->type = BINDER_TYPE_WEAK_HANDLE;
        fp->handle = ref->desc;
    ..........................................
    }

    由之前我们已经知道,SM仅仅是保存了server binder的handle和name。那么当client须要和某个service通讯的时候,怎样获得service的binder呢?接着看readStrongBinder

    8.2 readStrongBinder

    当server端收到client的调用请求之后。假设须要返回一个binder时,能够向BD发送这个binder。当IPCThreadState实例收到这个返回的Parcel时。client能够通过这个函数将这个被server返回的binder读出。

    sp<IBinder> Parcel::readStrongBinder() const
    {
        sp<IBinder> val;
        unflatten_binder(ProcessState::self(), *this, &val);
        return val;
    }

    再看unflatten_binder:

    status_t unflatten_binder(const sp<ProcessState>& proc,
        const Parcel& in, sp<IBinder>* out)
    {
        const flat_binder_object* flat = in.readObject(false);
    
        if (flat) {
            switch (flat->type) {
                case BINDER_TYPE_BINDER:
                    *out = reinterpret_cast<IBinder*>(flat->cookie);
                    return finish_unflatten_binder(NULL, *flat, in);
                case BINDER_TYPE_HANDLE:
                    *out = proc->getStrongProxyForHandle(flat->handle);
                    return finish_unflatten_binder(
                        static_cast<BpBinder*>(out->get()), *flat, in);
            }
        }
        return BAD_TYPE;
    }

    发现假设server返回的binder类型为BINDER_TYPE_BINDER的话。也就是返回一个binder引用的话。直接获取这个binder;假设server返回的binder类型为BINDER_TYPE_HANDLE时,也就是server返回的不过binder的handle,那么须要又一次创建一个BpBinder返回给client。

    有上面的代码能够看出,SM保存的service的binder不过一个handle,而client则是通过向SM获得这个handle。从而又一次构建代理binder与server通信。

    这里顺带提一下一种特殊的情况。binder通信的两方就可以作为client,也能够作为server.也就是说此时的binder通信是一个半双工的通信。

    那么在这样的情况下,操作的过程会比单工的情况复杂,可是主要的原理是一样的,有兴趣能够分析一下MediaPlayer和MediaPlayerService的样例。

    以上就是涉及到binder通讯的一些比較重要的点。

    关于binder的详细实现就须要查看binder driver的代码了。

    查看详情

    关注微信公众平台:程序猿互动联盟(coder_online),你能够第一时间获取原创技术文章。和(java/C/C++/Android/Windows/Linux)技术大牛做朋友。在线交流编程经验,获取编程基础知识,解决编程问题。程序猿互动联盟。开发者自己的家。

    C++ Primer高速入门之五:有用的模板库

  • 相关阅读:
    JBPM流程部署之流程版本升级
    JBPM流程部署校验之java利用XSD校验XML
    JBPM节点分支之Group节点分析
    Object Oriented Programming in JavaScript
    JBPM流程部署之部署环境初始化
    JBPM流程定义校验之.net利用XSD校验XML
    JBPM流程部署之流程定义实体对象分析
    使用Jasob混淆javascript代码
    利用javascript的面向对象的特性实现限制试用期
    JBPM流程部署之流程支持的节点扩展
  • 原文地址:https://www.cnblogs.com/zsychanpin/p/6837585.html
Copyright © 2020-2023  润新知