• hdu4932 Miaomiao's Geometry (BestCoder Round #4 枚举)


    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4932


    Miaomiao's Geometry

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 410    Accepted Submission(s): 147


    Problem Description
    There are N point on X-axis . Miaomiao would like to cover them ALL by using segments with same length.

    There are 2 limits:

    1.A point is convered if there is a segments T , the point is the left end or the right end of T.
    2.The length of the intersection of any two segments equals zero.

    For example , point 2 is convered by [2 , 4] and not convered by [1 , 3]. [1 , 2] and [2 , 3] are legal segments , [1 , 2] and [3 , 4] are legal segments , but [1 , 3] and [2 , 4] are not (the length of intersection doesn't equals zero), [1 , 3] and [3 , 4] are not(not the same length).

    Miaomiao wants to maximum the length of segements , please tell her the maximum length of segments.

    For your information , the point can't coincidently at the same position.
     
    Input
    There are several test cases.
    There is a number T ( T <= 50 ) on the first line which shows the number of test cases.
    For each test cases , there is a number N ( 3 <= N <= 50 ) on the first line.
    On the second line , there are N integers Ai (-1e9 <= Ai <= 1e9) shows the position of each point.
     
    Output
    For each test cases , output a real number shows the answser. Please output three digit after the decimal point.
     
    Sample Input
    3 3 1 2 3 3 1 2 4 4 1 9 100 10
     

    Sample Output
    1.000 2.000 8.000
    Hint
    For the first sample , a legal answer is [1,2] [2,3] so the length is 1. For the second sample , a legal answer is [-1,1] [2,4] so the answer is 2. For the thired sample , a legal answer is [-7,1] , [1,9] , [10,18] , [100,108] so the answer is 8.
     
    Source
     

    题意:

    求最大可以覆盖全部所给的点的区间长度(所给的点必须处于区间两端)。


    思路:

            答案一定是相邻点之间的差值或者是相邻点之间的差值除以2,那么把这些可能的答案先算出来。然后依次从最大的開始枚举进行验证就可以。


    代码例如以下:


    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    using namespace std;
    const int MAXN = 147;
    int f[MAXN];//记录线段方向
    double p[MAXN];
    double d[MAXN];//相邻断点的差值
    int n;
    void init()
    {
        memset(p,0,sizeof(p));
        memset(f,0,sizeof(f));
        memset(d,0,sizeof(d));
    }
    
    bool Judge(double tt)
    {
         int i;
        for(i = 1; i < n-1; i++)
        {
            if(p[i] - tt < p[i-1] && p[i] + tt > p[i+1])
                break;//不管向左还是向右均为不符合
            if(p[i] - tt >= p[i-1])//向左察看
            {
                if(f[i-1] == 2)//假设前一个是向右的
                {
                    if(p[i] - p[i-1] == tt)
                        f[i] = 1;//两个点作为线段的两个端点
                    else if(p[i] - p[i-1] >= 2*tt)//一个向左一个向右
                    {
                        f[i] = 1;
                    }
                    else if(p[i] + tt <= p[i+1])
                    {
                        f[i] = 2;//仅仅能向右
                    }
                    else
                        return false;
                }
                else
                    f[i] = 1;
            }
            else if(p[i] + tt <= p[i+1])
                f[i] = 2;
        }
        if(i == n-1)//所有符合
            return true;
        return false;
    }
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            init();
            scanf("%d",&n);
            for(int i = 0; i < n; i++)
            {
                scanf("%lf",&p[i]);
            }
            sort(p,p+n);
            int cont = 0;
            for(int i = 1; i < n; i++)
            {
                d[cont++] = p[i] - p[i-1];
                d[cont++] = (p[i] - p[i-1])/2.0;
            }
            sort(d,d+cont);
            double ans = 0;
            for(int i = cont-1; i >= 0; i--)
            {
                memset(f,0,sizeof(f));
                f[0] = 1; //開始肯定是让线段向左
                if(Judge(d[i]))
                {
                    ans = d[i];
                    break;
                }
            }
            printf("%.3lf
    ",ans);
        }
        return 0;
    }
    


  • 相关阅读:
    CNN网络架构演进:从LeNet到DenseNet
    Dropout VS Batch Normalization
    Batch Normalization
    达梦数据库序列号升级的办法
    [Function Programming] Function modelling -- 9. Monad Transformers
    [Functional Programming] Function modelling -- 8. Compose Functors
    [Javascript] HTML5 DOM project
    [ML L3] SVM Intro
    博客粘贴图片自动上传到服务器(Java版)
    wordpress粘贴图片自动上传到服务器(Java版)
  • 原文地址:https://www.cnblogs.com/zsychanpin/p/6832346.html
Copyright © 2020-2023  润新知