• leetcode 110 Balanced Binary Tree


    Balanced Binary Tree Total Accepted: 63288 Total Submissions: 198315 My Submissions

                         

    Given a binary tree, determine if it is height-balanced.

    For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.




    我的解决方式:一个非递归一个递归。竟然比全递归的版本号慢。


    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
    int Depth(TreeNode* root)
        {
           if(root == NULL)return 0;
            
            int result = 0;
            queue<TreeNode *>q;
            q.push(root);
            
            while(!q.empty())
            {
                ++result;
                
                for(int i = 0,n = q.size(); i < n ; i++)
                {
                    TreeNode* p = q.front();
                    q.pop();
                    
                    if(p->left!= NULL)q.push(p->left);
                    if(p->right!= NULL)q.push(p->right);
                }
                
               
            }
             return result;
        }
        
        bool isBalanced(TreeNode* root)
        {
            if(root == NULL)
            return true;
            
            int left = Depth(root->left);
            int right = Depth(root -> right);
            return abs(left - right)<=1&& isBalanced(root -> left)&&isBalanced(root ->right);
        }
    };



    This problem is generally believed to have two solutions: the top down approach and the bottom up way.
    
    1.The first method checks whether the tree is balanced strictly according to the definition of balanced binary tree: the difference between the heights of the two sub trees are not bigger than 1, and both the left sub tree and right sub tree are also balanced. With the helper function depth(), we could easily write the code; 
    
    class solution {
    public:
        int depth (TreeNode *root) {
            if (root == NULL) return 0;
            return max (depth(root -> left), depth (root -> right)) + 1;
        }
    
        bool isBalanced (TreeNode *root) {
            if (root == NULL) return true;
    
            int left=depth(root->left);
            int right=depth(root->right);
    
            return abs(left - right) <= 1 && isBalanced(root->left) && isBalanced(root->right);
        }
    };
    
    For the current node root, calling depth() for its left and right children actually has to access all of its children, thus the complexity is O(N). We do this for each node in the tree, so the overall complexity of isBalanced will be O(N^2). This is a top down approach.
    
    2.The second method is based on DFS. Instead of calling depth() explicitly for each child node, we return the height of the current node in DFS recursion. When the sub tree of the current node (inclusive) is balanced, the function dfsHeight() returns a non-negative value as the height. Otherwise -1 is returned. According to the leftHeight and rightHeight of the two children, the parent node could check if the sub tree is balanced, and decides its return value.
    
    class solution {
    public:
    int dfsHeight (TreeNode *root) {
            if (root == NULL) return 0;
    
            int leftHeight = dfsHeight (root -> left);
            if (leftHeight == -1) return -1;
            int rightHeight = dfsHeight (root -> right);
            if (rightHeight == -1) return -1;
    
            if (abs(leftHeight - rightHeight) > 1)  return -1;
            return max (leftHeight, rightHeight) + 1;
        }
        bool isBalanced(TreeNode *root) {
            return dfsHeight (root) != -1;
        }
    };
    
    In this bottom up approach, each node in the tree only need to be accessed once. Thus the time complexity is O(N), better than the first solution.
    



    class Solution {
    public:
        bool isBalanced(TreeNode *root) {
            // recursion
            if (!root) return true;
            int l = maxDepth(root->left);
            int n = maxDepth(root->right);
            if (abs(l - n) <= 1)
                return isBalanced(root->left) && isBalanced(root->right);
            else
                return false;
        }
    
        int maxDepth(TreeNode* root)
        {
            if (!root)
                return 0;
            return 1 + max(maxDepth(root->left), maxDepth(root->right));
        }
    };
    



    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     struct TreeNode *left;
     *     struct TreeNode *right;
     * };
     */
    
    int checkBalanceAndDepth(struct TreeNode* node, bool *isBalanced)
    {
        int leftDepth = node->left == NULL? 0 : checkBalanceAndDepth(node->left, isBalanced);
        if(!*isBalanced)
        {
            return -1;
        }
        int rightDepth = node->right == NULL? 0 :checkBalanceAndDepth(node->right, isBalanced);
        if(!*isBalanced)
        {
            return -1;
        }
        int diff = leftDepth - rightDepth;
        *isBalanced = (diff == -1 || diff == 0 || diff == 1);
        return leftDepth > rightDepth? leftDepth + 1 : rightDepth + 1;
    }
    bool isBalanced(struct TreeNode* root) {
        if(root == NULL) return true;
        bool balanced = true;
        checkBalanceAndDepth(root, &balanced);
        return balanced;
    }
    


    def depth(self,root):
            if root == None:
                return 0
            else:
                return max(self.depth(root.left), self.depth(root.right))+1
    
    
    
        def isBalanced(self, root):
            if root == None:
                return True
            n1=self.depth(root.left)
            n2=self.depth(root.right)
            if ((n1-n2) in range(-1,2)) and self.isBalanced(root.left) and self.isBalanced(root.right):
                return True
            else:
                return False
    


    
  • 相关阅读:
    c#正则表达式应用实例
    C# 中堆栈,堆,值类型,引用类型的理解 (摘抄)
    c#用正则表达式获得指定开始和结束字符串中间的一段文本
    asp.net c#截取指定字符串函数
    <收藏>提高Web性能的14条法则(详细版)
    利用Anthem.net 实现前台javascript调用服务器端c#函数 及流程分析
    Anthem.net
    jQuery animate(滑块滑动)
    .NET使用母版页后,控件名称自动生成导致js无法正常操作.net控件的问题
    Cocos2dx跨平台Android环境配置
  • 原文地址:https://www.cnblogs.com/zsychanpin/p/6738608.html
Copyright © 2020-2023  润新知