• leetcode 110 Balanced Binary Tree


    Balanced Binary Tree Total Accepted: 63288 Total Submissions: 198315 My Submissions

                         

    Given a binary tree, determine if it is height-balanced.

    For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.




    我的解决方式:一个非递归一个递归。竟然比全递归的版本号慢。


    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
    int Depth(TreeNode* root)
        {
           if(root == NULL)return 0;
            
            int result = 0;
            queue<TreeNode *>q;
            q.push(root);
            
            while(!q.empty())
            {
                ++result;
                
                for(int i = 0,n = q.size(); i < n ; i++)
                {
                    TreeNode* p = q.front();
                    q.pop();
                    
                    if(p->left!= NULL)q.push(p->left);
                    if(p->right!= NULL)q.push(p->right);
                }
                
               
            }
             return result;
        }
        
        bool isBalanced(TreeNode* root)
        {
            if(root == NULL)
            return true;
            
            int left = Depth(root->left);
            int right = Depth(root -> right);
            return abs(left - right)<=1&& isBalanced(root -> left)&&isBalanced(root ->right);
        }
    };



    This problem is generally believed to have two solutions: the top down approach and the bottom up way.
    
    1.The first method checks whether the tree is balanced strictly according to the definition of balanced binary tree: the difference between the heights of the two sub trees are not bigger than 1, and both the left sub tree and right sub tree are also balanced. With the helper function depth(), we could easily write the code; 
    
    class solution {
    public:
        int depth (TreeNode *root) {
            if (root == NULL) return 0;
            return max (depth(root -> left), depth (root -> right)) + 1;
        }
    
        bool isBalanced (TreeNode *root) {
            if (root == NULL) return true;
    
            int left=depth(root->left);
            int right=depth(root->right);
    
            return abs(left - right) <= 1 && isBalanced(root->left) && isBalanced(root->right);
        }
    };
    
    For the current node root, calling depth() for its left and right children actually has to access all of its children, thus the complexity is O(N). We do this for each node in the tree, so the overall complexity of isBalanced will be O(N^2). This is a top down approach.
    
    2.The second method is based on DFS. Instead of calling depth() explicitly for each child node, we return the height of the current node in DFS recursion. When the sub tree of the current node (inclusive) is balanced, the function dfsHeight() returns a non-negative value as the height. Otherwise -1 is returned. According to the leftHeight and rightHeight of the two children, the parent node could check if the sub tree is balanced, and decides its return value.
    
    class solution {
    public:
    int dfsHeight (TreeNode *root) {
            if (root == NULL) return 0;
    
            int leftHeight = dfsHeight (root -> left);
            if (leftHeight == -1) return -1;
            int rightHeight = dfsHeight (root -> right);
            if (rightHeight == -1) return -1;
    
            if (abs(leftHeight - rightHeight) > 1)  return -1;
            return max (leftHeight, rightHeight) + 1;
        }
        bool isBalanced(TreeNode *root) {
            return dfsHeight (root) != -1;
        }
    };
    
    In this bottom up approach, each node in the tree only need to be accessed once. Thus the time complexity is O(N), better than the first solution.
    



    class Solution {
    public:
        bool isBalanced(TreeNode *root) {
            // recursion
            if (!root) return true;
            int l = maxDepth(root->left);
            int n = maxDepth(root->right);
            if (abs(l - n) <= 1)
                return isBalanced(root->left) && isBalanced(root->right);
            else
                return false;
        }
    
        int maxDepth(TreeNode* root)
        {
            if (!root)
                return 0;
            return 1 + max(maxDepth(root->left), maxDepth(root->right));
        }
    };
    



    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     struct TreeNode *left;
     *     struct TreeNode *right;
     * };
     */
    
    int checkBalanceAndDepth(struct TreeNode* node, bool *isBalanced)
    {
        int leftDepth = node->left == NULL? 0 : checkBalanceAndDepth(node->left, isBalanced);
        if(!*isBalanced)
        {
            return -1;
        }
        int rightDepth = node->right == NULL? 0 :checkBalanceAndDepth(node->right, isBalanced);
        if(!*isBalanced)
        {
            return -1;
        }
        int diff = leftDepth - rightDepth;
        *isBalanced = (diff == -1 || diff == 0 || diff == 1);
        return leftDepth > rightDepth? leftDepth + 1 : rightDepth + 1;
    }
    bool isBalanced(struct TreeNode* root) {
        if(root == NULL) return true;
        bool balanced = true;
        checkBalanceAndDepth(root, &balanced);
        return balanced;
    }
    


    def depth(self,root):
            if root == None:
                return 0
            else:
                return max(self.depth(root.left), self.depth(root.right))+1
    
    
    
        def isBalanced(self, root):
            if root == None:
                return True
            n1=self.depth(root.left)
            n2=self.depth(root.right)
            if ((n1-n2) in range(-1,2)) and self.isBalanced(root.left) and self.isBalanced(root.right):
                return True
            else:
                return False
    


    
  • 相关阅读:
    死锁
    钩子函数和回调函数的区别
    蓝绿部署、滚动发布、灰度发布的介绍以及最佳实践
    小公司的瓶颈
    Modbus协议详解
    windows+jenkin
    Java:简单的多态实例
    一、Kubernetes系列之介绍篇
    Shell脚本自动搭建ipsec环境
    Appium(1):安卓自动化环境搭建 + Android SDK + Appium 环境搭建
  • 原文地址:https://www.cnblogs.com/zsychanpin/p/6738608.html
Copyright © 2020-2023  润新知