• hdu 2586(LCA在线ST)


    How far away ?
    
    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 12063    Accepted Submission(s): 4445
    
    
    Problem Description
    There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.
     
    
    Input
    First line is a single integer T(T<=10), indicating the number of test cases.
      For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
      Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
     
    
    Output
    For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
     
    
    Sample Input
    2
    3 2
    1 2 10
    3 1 15
    1 2
    2 3
    
    2 2
    1 2 100
    1 2
    2 1
     
    
    Sample Output
    10
    25
    100
    100

    LCA在线ST:对一颗有根树进行DFS搜索,无论递归还是回溯,每次到达一个节点都将节点的编号记录下来,这样就得到了一条长度为2*n-1的欧拉序列,这样在序列中,从u到v

    一定会有u,v的祖先,而不会有u,v祖先节点的祖先,而且u,v之间深度最小的节点就是LCA(u,v),再使用ST算法求RMQ,这样每次查询的时间就能达到O(1)

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #define scan(x) scanf("%d",&x)
    #define scan2(x,y) scanf("%d%d",&x,&y)
    #define scan3(x,y,z) scanf("%d%d%d",&x,&y,&z)
    using namespace std;
    const int Max=40010;
    const int E=40010*2;
    int head[Max],nex[E],pnt[E],cost[E],edge;
    int vex[Max<<1],R[Max<<1],vis[Max],dis[Max],first[Max],tot;
    //!!vex R 长度要Max*2,因为算法特性会生成顶点数两倍的序列
    int n;
    void Addedge(int u,int v,int c)
    {
        pnt[edge]=v;cost[edge]=c;
        nex[edge]=head[u];head[u]=edge++;
    }
    void dfs(int u,int deep)
    {
        vis[u]=1;
        vex[++tot]=u;   //以tot为编号的的节点
        first[u]=tot;   //u节点的编号为tot
        R[tot]=deep;    //tot编号节点的深度
        for(int x=head[u];x!=-1;x=nex[x])
        {
            int v=pnt[x],c=cost[x];
            if(!vis[v])
            {
                dis[v]=dis[u]+c;
                dfs(v,deep+1);
                vex[++tot]=u;
                R[tot]=deep;
            }
        }
    }
    int dp[Max<<1][25];
    //!!dp长度要Max*2,,因为算法特性会生成顶点数两倍的序列
    void ST(int n) //n是2*n-1
    {
        int x,y;
        for(int i=1;i<=n;i++) dp[i][0]=i;
        for(int j=1;(1<<j)<=n;j++)
        {
            for(int i=1;i+(1<<j)-1<=n;i++)
            {
              x=dp[i][j-1];y=dp[i+(1<<(j-1))][j-1];
              dp[i][j]=(R[x]<R[y]?x:y);
            }
        }
    }
    int RMQ(int l,int r)
    {
        int k=0,x,y;
        while((1<<(k+1))<=r-l+1) k++;
        x=dp[l][k];y=dp[r-(1<<k)+1][k];
        return (R[x]<R[y])?x:y;
    }
    int LCA(int u,int v)
    {
        int x=first[u],y=first[v];
        if(x>y) swap(x,y);
        int res=RMQ(x,y);  //在u,v之间的最小深度节点即为lca
        return vex[res];
    }
    void Init()
    {
        edge=0;
        memset(head,-1,sizeof(head));
        memset(nex,-1,sizeof(nex));
        memset(vis,0,sizeof(vis));
    }
    int main()
    {
        int T,Q;
        for(scan(T);T;T--)
        {
            Init();
            int u,v,c;
            scan2(n,Q);
            for(int i=0;i<n-1;i++)
            {
                scan3(u,v,c);
                Addedge(u,v,c);
                Addedge(v,u,c);
            }
            tot=0;dis[1]=0;
            dfs(1,1);
            ST(2*n);
            while(Q--)
            {
                scan2(u,v);
                int lca=LCA(u,v);
                printf("%d
    ",dis[u]+dis[v]-2*dis[lca]);
            }
        }
        return 0;
    }
  • 相关阅读:
    实用技巧——让你的网站变成响应式的3个简单步骤
    C#网络编程初步之TCP
    C#调用WebService实例和开发
    获取GridView中RowCommand的当前索引行
    创建Spring项目 IOException parsing XML document from class path resource [ApplicationContext.xml];
    java8的日期处理
    使用IDEA创建动态web项目
    连接数据库出现The server time zone value '�й���׼ʱ��' is unrecogni的解决方案
    Spring Boot RabbitMQ 应用场景--转载
    SpringBoot可视化监控
  • 原文地址:https://www.cnblogs.com/zsyacm666666/p/5685776.html
Copyright © 2020-2023  润新知