• Balanced Numbers(数位dp)


    Description

    Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a balanced number if:

    1)      Every even digit appears an odd number of times in its decimal representation

    2)      Every odd digit appears an even number of times in its decimal representation

    For example, 77, 211, 6222 and 112334445555677 are balanced numbers while 351, 21, and 662 are not.

    Given an interval [A, B], your task is to find the amount of balanced numbers in [A, B] where both A and B are included.

    Input

    The first line contains an integer T representing the number of test cases.

    A test case consists of two numbers A and B separated by a single space representing the interval. You may assume that 1 <= A <= B <= 1019 

    Output

    For each test case, you need to write a number in a single line: the amount of balanced numbers in the corresponding interval

    Example

    Input:
    2
    1 1000
    1 9
    Output:
    147
    4
    开始把题目看错,以为是要求数位中奇数的个数有偶数个,偶数的个数有奇数个
    然而也从中找到一个坑点:不要把前导0记录进去,例如009,应该是9,0是没有出现过的
    真正的题意是每个奇数出现的次数是偶数,每个偶数出现的次数是奇数。。注意每个。。
    如123 我们只能说1是奇数出现了1次,2是偶数出现了1次,3是奇数出现了一次,不能说奇数出现了2次,偶数出现了1次
    好吧,其实这道题的难点在于三进制记录状态,因为要在数和状态之间进行互相转换,哈希好像做不了。。
      
    #include <stdio.h>
    #include <string.h>
    long long dp[20][60000];
    int bit[20];
    int updata(int x,int n)
    {
        int num[10];
        for(int i=0;i<=9;i++)
        {
            num[i]=x%3;
            x/=3;
        }
        if(num[n]==0) num[n]=1;
        else          num[n]=3-num[n];
        int ans=0,xx=1;
        for(int i=0;i<=9;i++)
        {
            ans+=num[i]*xx;
            xx*=3;
        }
        return ans;
    }
    int is_ok(int x)
    {
        int num[10];
        for(int i=0;i<=9;i++)
        {
            num[i]=x%3;
            if(num[i]==2&&i%2==0) return 0;
            if(num[i]==1&&i%2==1) return 0;
            x/=3;
        }
        return 1;
    }
    long long dfs(int len,int x,int flag,int cc)
    {
        if(len<=0)
        {
            if(is_ok(x)) return 1;
            else         return 0;
        }
        if(!flag&&dp[len][x]!=-1) return dp[len][x];
        long long ans=0,tmp;
        int end=flag?bit[len]:9;
        for(int i=0;i<=end;i++)
        {
            if(cc!=1||len==1)
            {
               tmp=dfs(len-1,updata(x,i),flag&&i==end,0);
            }
            else
            {
                if(i==0)
                {
                   tmp=dfs(len-1,x,flag&&i==end,1);
                }
                else
                {
                    tmp=dfs(len-1,updata(x,i),flag&&i==end,0);
                }
            }
            ans+=tmp;
        }
        if(!flag) dp[len][x]=ans;
        return ans;
    }
    long long cacu(long long n)
    {
        int pos=0;
        if(n<10) bit[++pos]=n;
        else
        while(n)
        {
            bit[++pos]=n%10;
            n/=10;
        }
        return dfs(pos,0,1,1);
    }
    int main()
    {
        memset(dp,-1,sizeof(dp));
        int T;
        for(scanf("%d",&T);T;T--)
        {
            long long A,B;
            scanf("%lld%lld",&A,&B);
     //       printf("%lld  %lld
    ",cacu(A-1),cacu(B));
            printf("%lld
    ",cacu(B)-cacu(A-1));
        }
        return 0;
    }
    View Code
  • 相关阅读:
    C# GDI 绘图打印
    使用批处理,WINRAR 创建自解压文件
    c# 开放/封闭原则
    php 盖尔-沙普利算法
    c# 遍历 Mysql 所有表所有列,查找目标数据
    C# 与 C++ 互操作(C# 调用 C++ 的动态链接库)
    c# WPF DataGrid 获取选中单元格信息
    c# WPF SVG 文件的引用(SharpVectors)
    c# 使用网站的身份验证及 Cookie 的获取与使用
    c# HttpListener 使用
  • 原文地址:https://www.cnblogs.com/zsyacm666666/p/5289160.html
Copyright © 2020-2023  润新知