「JSOI2014」支线剧情2
传送门
不难发现原图是一个以 (1) 为根的有根树,所以我们考虑树形 ( ext{DP})。
设 (f_i) 表示暴力地走完以 (i) 为根的子树的最小代价,那么 (f_i) 的计算就很显然了:
[f_i = sum_{j in son_i}f_j + s_j imes dis(i, j)
]
(s_i) 表示以 (i) 为根的子树的叶子数。
我们再设一个 (dp_i) 表示在可以存档读档的条件下走完以 (i) 为根的子树的最小代价。
那么我们的转移就是枚举 (i) 的一个儿子用来存档或者不存档,然后计算 (dp_i) 即可。
参考代码:
#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
template < class T > inline T min(T a, T b) { return a < b ? a : b; }
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
}
typedef long long LL;
const int _ = 1e6 + 5;
int tot, head[_]; struct Edge { int v, w, nxt; } edge[_ << 1];
inline void Add_edge(int u, int v, int w) { edge[++tot] = (Edge) { v, w, head[u] }, head[u] = tot; }
int n, num[_]; LL f[_], dp[_];
inline void dfs(int u, LL dis) {
if (head[u] == 0) { num[u] = 1; return ; }
LL sum = 0;
for (rg int i = head[u]; i; i = edge[i].nxt) {
int v = edge[i].v, w = edge[i].w;
dfs(v, dis + w), num[u] += num[v], f[u] += f[v] + 1ll * w * num[v];
sum += min(f[v] + 1ll * w * num[v], dp[v] + dis + w);
}
dp[u] = f[u];
for (rg int i = head[u]; i; i = edge[i].nxt) {
int v = edge[i].v, w = edge[i].w;
dp[u] = min(dp[u], sum - min(f[v] + 1ll * w * num[v], dp[v] + dis + w) + dp[v] + w);
}
}
int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(n);
for (rg int k, x, y, i = 1; i <= n; ++i) {
read(k);
while (k--) read(x), read(y), Add_edge(i, x, y);
}
dfs(1, 0);
printf("%lld
", dp[1]);
return 0;
}