传送门
Luogu
解题思路
发现一个性质:
对于排列的任何一个循环位移,排列中的同一个数的前驱肯定是不变的。
而且,如果一个排列的循环位移是某一个区间的子序列,那么这个循环位移的结尾的 (n-1) 级前驱一定要位于这个区间内。
到这里我们就可以倍增维护 (2^k) 级祖先,然后再搞一个数据结构维护一下区间最大值就好了。
细节注意事项
- 咕咕咕
参考代码
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cctype>
#include <cmath>
#include <ctime>
#define rg register
using namespace std;
template < typename T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while (!isdigit(c)) f |= (c == '-'), c = getchar();
while (isdigit(c)) s = s * 10 + (c ^ 48), c = getchar();
s = f ? -s : s;
}
const int _ = 200010;
int n, m, q, p[_], pre[_], lg[_];
int a[_], las[_], f[22][_], st[22][_];
inline int query(int ql, int qr) {
int x = lg[qr - ql + 1];
return max(st[x][ql], st[x][qr - (1 << x) + 1]);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("in.in", "r", stdin);
#endif
read(n), read(m), read(q);
for (rg int i = 2; i <= max(n, m); ++i) lg[i] = lg[i / 2] + 1;
for (rg int i = 1; i <= n; ++i) read(p[i]); p[0] = p[n];
for (rg int i = 1; i <= m; ++i) read(a[i]);
for (rg int i = 1; i <= n; ++i) pre[p[i]] = p[i - 1];
for (rg int i = 1; i <= m; ++i) f[0][i] = las[pre[a[i]]], las[a[i]] = i;
for (rg int j = 1; j <= lg[m]; ++j)
for (rg int i = 1; i <= m; ++i)
f[j][i] = f[j - 1][f[j - 1][i]];
for (rg int i = 1; i <= m; ++i) {
st[0][i] = i;
for (rg int j = 0; j <= lg[n]; ++j)
if ((n - 1) & (1 << j)) st[0][i] = f[j][st[0][i]];
}
for (rg int j = 1; j <= lg[m]; ++j)
for (rg int i = 1; i + (1 << j) - 1 <= m; ++i)
st[j][i] = max(st[j - 1][i], st[j - 1][i + (1 << (j - 1))]);
for (rg int ql, qr, i = 1; i <= q; ++i)
read(ql), read(qr), putchar(query(ql ,qr) >= ql ? '1' : '0');
return 0;
}
完结撒花 (qwq)