# -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def real_func(): return def emperor(): num_points = 1000 vectors_set = [] for i in range(num_points): x1 = np.random.normal(0.0, 0.55) y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03) vectors_set.append([x1, y1]) x_data = [v[0] for v in vectors_set] y_data = [v[1] for v in vectors_set] # plt.scatter(x_data, y_data, c='r') # plt.show() W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W') b = tf.Variable(tf.zeros([1]), name='b') y = W * x_data + b loss = tf.reduce_mean(tf.square(y - y_data), name='loss') optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss, name='train') sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) # print('W=', sess.run(W), 'b=', sess.run(b), 'loss=', sess.run(loss)) for step in range(20): sess.run(train) print('W=', sess.run(W), 'b=', sess.run(b), 'loss=', sess.run(loss)) writer = tf.summary.FileWriter(r'C:UsersAdministratorDesktopmeatwicemeatwice 1newCognition einforcement_learning ew_test_tensorflow/tmp', sess.graph) plt.scatter(x_data, y_data, c='r') plt.plot(x_data, sess.run(W) * x_data + sess.run(b)) plt.show() if __name__ == "__main__": emperor()
运行结果: