• hashMap源码解析(四)


    ---恢复内容开始---

    在上文中讲到了putval这个方法,这里继续:

        final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                       boolean evict) {
            Node<K,V>[] tab; Node<K,V> p; int n, i;
            if ((tab = table) == null || (n = tab.length) == 0)
                n = (tab = resize()).length;
            if ((p = tab[i = (n - 1) & hash]) == null)
                tab[i] = newNode(hash, key, value, null);
            else {
                Node<K,V> e; K k;
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    e = p;
                else if (p instanceof TreeNode)
                    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
                else {
                    for (int binCount = 0; ; ++binCount) {
                        if ((e = p.next) == null) {
                            p.next = newNode(hash, key, value, null);   //可以发现,在jdk1.8中,当hash值相等时,最后插入的元素将会被安置在链的尾端
                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                                treeifyBin(tab, hash);
                            break;
                        }
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            break;
                        p = e;
                    }
                }
                if (e != null) { // existing mapping for key
                    V oldValue = e.value;
                    if (!onlyIfAbsent || oldValue == null)
                        e.value = value;
                    afterNodeAccess(e);
                    return oldValue;
                }
            }
            ++modCount;
            if (++size > threshold)
                resize();
            afterNodeInsertion(evict);
            return null;
        }

    红黑树后面章节会单独拿出来讲,这里先忽略.

    这里需要留意标红的两个钩子函数.

    源码如下:

        // Callbacks to allow LinkedHashMap post-actions
        void afterNodeAccess(Node<K,V> p) { }
        void afterNodeInsertion(boolean evict) { }
        void afterNodeRemoval(Node<K,V> p) { }
    

      这个三个方法的实现是在子类LinkedHashMap中,顾名思义,三个函数的作用分别是:节点访问后,节点插入后,节点移除后 做一些操作.

     void afterNodeRemoval(Node<K,V> e) { // unlink   //从链表中移除(这个函数是在移除节点后调用的,就是将节点从双向链表中删除。)
            LinkedHashMap.Entry<K,V> p =
                (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
            p.before = p.after = null;
            if (b == null)
                head = a;
            else
                b.after = a;
            if (a == null)
                tail = b;
            else
                a.before = b;
        }
    
        void afterNodeInsertion(boolean evict) { // possibly remove eldest    //(// 如果定义了移除规则,则执行相应的溢出)
            LinkedHashMap.Entry<K,V> first;
            if (evict && (first = head) != null && removeEldestEntry(first)) {
                K key = first.key;
                removeNode(hash(key), key, null, false, true);
            }
        }
    
        void afterNodeAccess(Node<K,V> e) { // move node to last
            LinkedHashMap.Entry<K,V> last;
            if (accessOrder && (last = tail) != e) {//如果定义了accessOrder,则保证了最近访问的节点(添加的节点)位于最后
                LinkedHashMap.Entry<K,V> p =
                    (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
                p.after = null;
                if (b == null)
                    head = a;
                else
                    b.after = a;
                if (a != null)
                    a.before = b;
                else
                    last = b;
                if (last == null)
                    head = p;
                else {
                    p.before = last;
                    last.after = p;
                }
                tail = p;
                ++modCount;
            }
        }
    

      我们从上面3个函数看出来,基本上都是为了保证双向链表中的节点次序或者双向链表容量所做的一些额外的事情,目的就是保持双向链表中节点的顺序要从eldest到youngest。

    以上关于钩子函数的内容暂不深究,等研究LinkedHashMap源码时再去探讨.

    
    
    
    

    以上putval方法也是插入元素的put方法.以下为获取元素的get方法:

    源码:

        final Node<K,V> getNode(int hash, Object key) {
            Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
                if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                    return first;
                if ((e = first.next) != null) {
                    if (first instanceof TreeNode)
                        return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            return e;
                    } while ((e = e.next) != null);
                }
            }
            return null;
        }
    

      get方法相对于put方法要简单的多,简单理解就是 通过key的hash值 获取数组位置,再遍历该位置的链表,获取想要的元素.唯一需要留意的是红黑树部分,这部分后面章节会单独拎出来讲.

    删除remove方法:

    源码:

    public V remove(Object key) {
            Node<K,V> e;
            return (e = removeNode(hash(key), key, null, false, true)) == null ?
                null : e.value;
        }
    /**
    * Implements Map.remove and related methods
    *
    * @param hash hash for key
    * @param key the key
    * @param value the value to match if matchValue, else ignored
    * @param matchValue if true only remove if value is equal
    * @param movable if false do not move other nodes while removing
    * @return the node, or null if none
    */
    final Node<K,V> removeNode(int hash, Object key, Object value,
    boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
    if ((tab = table) != null && (n = tab.length) > 0 &&
    (p = tab[index = (n - 1) & hash]) != null) {
    Node<K,V> node = null, e; K k; V v;
    if (p.hash == hash &&
    ((k = p.key) == key || (key != null && key.equals(k))))
    node = p;
    else if ((e = p.next) != null) {
    if (p instanceof TreeNode)
    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
    else {
    do {
    if (e.hash == hash &&
    ((k = e.key) == key ||
    (key != null && key.equals(k)))) {
    node = e;
    break;
    }
    p = e;
    } while ((e = e.next) != null);
    }
    }
    if (node != null && (!matchValue || (v = node.value) == value ||
    (value != null && value.equals(v)))) {
    if (node instanceof TreeNode)
    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
    else if (node == p)
    tab[index] = node.next;
    else
    p.next = node.next;
    ++modCount;
    --size;
    afterNodeRemoval(node);
    return node;
    }
    }
    return null;
    }

      这里可以稍微注意下 注释.

    matchValue:if true ,只有value相等才删除;

    movable:     if false ,不移动其它节点的位置.

    这里通过获取想要删除的节点e,通过node,和意义相同的节点p.next(p.next = node), 以p.next=node.next 的方式,讲节点node删除掉.

  • 相关阅读:
    web网站的测试需考虑的问题
    颜色搭配
    30岁前不必在乎的30件事情
    数据库时代的终结
    实现IT创业的十三种模式分析
    Linux rpm 命令参数使用详解[介绍和应用]
    PHP中的正则表达式及模式匹配
    linux下使用yum安装Apache+php+Mysql+phpMyAdmin
    jQuery.extend函数详细用法
    PHP CURL HTTP 研究笔记
  • 原文地址:https://www.cnblogs.com/zqsky/p/6791647.html
Copyright © 2020-2023  润新知