• Python科学画图小结


    Python画图主要用到matplotlib这个库。具体来说是pylab和pyplot这两个子库。这两个库可以满足基本的画图需求,而条形图,散点图等特殊图,下面再单独具体介绍。

    首先给出pylab神器镇文:pylab.rcParams.update(params)。这个函数几乎可以调节图的一切属性,包括但不限于:坐标范围,axes标签字号大小,xtick,ytick标签字号,图线宽,legend字号等。

    具体参数参看官方文档:http://matplotlib.org/users/customizing.html

    首先给出一个Python3画图的例子。

    import matplotlib.pyplot as plt
    import matplotlib.pylab as pylab
    import scipy.io
    import numpy as np
    params={
        'axes.labelsize': '35',        
        'xtick.labelsize':'27',
        'ytick.labelsize':'27',
        'lines.linewidth':2 ,
    	'legend.fontsize': '27',
    	'figure.figsize'   : '12, 9'    # set figure size
    }
    pylab.rcParams.update(params)            #set figure parameter
    #line_styles=['ro-','b^-','gs-','ro--','b^--','gs--']  #set line style
    
    
    
    		
    #We give the coordinate date directly to give an example.
    x1 = [-20,-15,-10,-5,0,0,5,10,15,20]
    y1 = [0,0.04,0.1,0.21,0.39,0.74,0.78,0.80,0.82,0.85]
    y2 = [0,0.014,0.03,0.16,0.37,0.78,0.81,0.83,0.86,0.92]
    y3 = [0,0.001,0.02,0.14,0.34,0.77,0.82,0.85,0.90,0.96]
    y4 = [0,0,0.02,0.12,0.32,0.77,0.83,0.87,0.93,0.98]
    y5 = [0,0,0.02,0.11,0.32,0.77,0.82,0.90,0.95,1]
    
    
    plt.plot(x1,y1,'bo-',label='m=2, p=10%',markersize=20) # in 'bo-', b is blue, o is O marker, - is solid line and so on
    plt.plot(x1,y2,'gv-',label='m=4, p=10%',markersize=20)
    plt.plot(x1,y3,'ys-',label='m=6, p=10%',markersize=20)
    plt.plot(x1,y4,'ch-',label='m=8, p=10%',markersize=20)
    plt.plot(x1,y5,'mD-',label='m=10, p=10%',markersize=20)
    
    
    fig1 = plt.figure(1)
    axes = plt.subplot(111)   
    #axes = plt.gca()
    axes.set_yticks([0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]) 
    axes.grid(True)  # add grid
    
    plt.legend(loc="lower right")  #set legend location
    plt.ylabel('Percentage')   # set ystick label
    plt.xlabel('Difference')  # set xstck label
    
    plt.savefig('D:\commonNeighbors_CDF_snapshots.eps',dpi = 1000,bbox_inches='tight')
    plt.show()
    

    显示效果如下:

     

    代码没什么好说的,这里只说一下plt.subplot(111)这个函数。

    plt.subplot(111)和plt.subplot(1,1,1)是等价的。意思是将区域分成1行1列,当前画的是第一个图(排序由行至列)。

    plt.subplot(211)意思就是将区域分成2行1列,当前画的是第一个图(第一行,第一列)。以此类推,只要不超过10,逗号就可省去。

    python画条形图。代码如下。

    import scipy.io
    import numpy as np
    import matplotlib.pylab as pylab
    import matplotlib.pyplot as plt
    import matplotlib.ticker as mtick
    params={
        'axes.labelsize': '35',
        'xtick.labelsize':'27',
        'ytick.labelsize':'27',
        'lines.linewidth':2 ,
        'legend.fontsize': '27',
        'figure.figsize'   : '24, 9'
    }
    pylab.rcParams.update(params)
    
    
    y1 = [9.79,7.25,7.24,4.78,4.20]
    y2 = [5.88,4.55,4.25,3.78,3.92]
    y3 = [4.69,4.04,3.84,3.85,4.0]
    y4 = [4.45,3.96,3.82,3.80,3.79]
    y5 = [3.82,3.89,3.89,3.78,3.77]
    
    
    
    ind = np.arange(5)                # the x locations for the groups
    width = 0.15
    plt.bar(ind,y1,width,color = 'blue',label = 'm=2')  
    plt.bar(ind+width,y2,width,color = 'g',label = 'm=4') # ind+width adjusts the left start location of the bar.
    plt.bar(ind+2*width,y3,width,color = 'c',label = 'm=6')
    plt.bar(ind+3*width,y4,width,color = 'r',label = 'm=8')
    plt.bar(ind+4*width,y5,width,color = 'm',label = 'm=10')
    plt.xticks(np.arange(5) + 2.5*width, ('10%','15%','20%','25%','30%'))
    
    plt.xlabel('Sample percentage')
    plt.ylabel('Error rate')
    
    fmt = '%.0f%%' # Format you want the ticks, e.g. '40%'
    xticks = mtick.FormatStrFormatter(fmt)   
    # Set the formatter
    axes = plt.gca()   # get current axes
    axes.yaxis.set_major_formatter(xticks) # set % format to ystick.
    axes.grid(True)
    plt.legend(loc="upper right")
    plt.savefig('D:\errorRate.eps', format='eps',dpi = 1000,bbox_inches='tight')
    
    plt.show()

    结果如下:

     

    画散点图,主要是scatter这个函数,其他类似。

    画网络图,要用到networkx这个库,下面给出一个实例:

    import networkx as nx
    import pylab as plt
    g = nx.Graph()
    g.add_edge(1,2,weight = 4)
    g.add_edge(1,3,weight = 7)
    g.add_edge(1,4,weight = 8)
    g.add_edge(1,5,weight = 3)
    g.add_edge(1,9,weight = 3) 
    
    g.add_edge(1,6,weight = 6)
    g.add_edge(6,7,weight = 7)
    g.add_edge(6,8,weight = 7)  
    
    g.add_edge(6,9,weight = 6) 
    g.add_edge(9,10,weight = 7) 
    g.add_edge(9,11,weight = 6) 
    
    
    
    fixed_pos = {1:(1,1),2:(0.7,2.2),3:(0,1.8),4:(1.6,2.3),5:(2,0.8),6:(-0.6,-0.6),7:(-1.3,0.8), 8:(-1.5,-1), 9:(0.5,-1.5), 10:(1.7,-0.8), 11:(1.5,-2.3)} #set fixed layout location
    
    
    
    #pos=nx.spring_layout(g) # or you can use other layout set in the module
    nx.draw_networkx_nodes(g,pos = fixed_pos,nodelist=[1,2,3,4,5],
    node_color = 'g',node_size = 600)
    nx.draw_networkx_edges(g,pos = fixed_pos,edgelist=[(1,2),(1,3),(1,4),(1,5),(1,9)],edge_color='g',width = [4.0,4.0,4.0,4.0,4.0],label = [1,2,3,4,5],node_size = 600)
    
    
    nx.draw_networkx_nodes(g,pos = fixed_pos,nodelist=[6,7,8],
    node_color = 'r',node_size = 600)
    nx.draw_networkx_edges(g,pos = fixed_pos,edgelist=[(6,7),(6,8),(1,6)],width = [4.0,4.0,4.0],edge_color='r',node_size = 600)
    
    nx.draw_networkx_nodes(g,pos = fixed_pos,nodelist=[9,10,11],
    node_color = 'b',node_size = 600)
    nx.draw_networkx_edges(g,pos = fixed_pos,edgelist=[(6,9),(9,10),(9,11)],width = [4.0,4.0,4.0],edge_color='b',node_size = 600)
    
    
    plt.text(fixed_pos[1][0],fixed_pos[1][1]+0.2, s = '1',fontsize = 40)
    plt.text(fixed_pos[2][0],fixed_pos[2][1]+0.2, s = '2',fontsize = 40)
    plt.text(fixed_pos[3][0],fixed_pos[3][1]+0.2, s = '3',fontsize = 40)
    plt.text(fixed_pos[4][0],fixed_pos[4][1]+0.2, s = '4',fontsize = 40)
    plt.text(fixed_pos[5][0],fixed_pos[5][1]+0.2, s = '5',fontsize = 40)
    plt.text(fixed_pos[6][0],fixed_pos[6][1]+0.2, s = '6',fontsize = 40)
    plt.text(fixed_pos[7][0],fixed_pos[7][1]+0.2, s = '7',fontsize = 40)
    plt.text(fixed_pos[8][0],fixed_pos[8][1]+0.2, s = '8',fontsize = 40)
    plt.text(fixed_pos[9][0],fixed_pos[9][1]+0.2, s = '9',fontsize = 40)
    plt.text(fixed_pos[10][0],fixed_pos[10][1]+0.2, s = '10',fontsize = 40)
    plt.text(fixed_pos[11][0],fixed_pos[11][1]+0.2, s = '11',fontsize = 40)
    
    
    
    plt.show()
    

    结果如下:

  • 相关阅读:
    PKU 1185-炮兵阵地(状压DP)
    pku1113-Wall 凸包(安德鲁算法版)
    PTA 6-15 用单向循环链表实现猴子选大王 (20 分)
    PTA 6-14 用单向链表完成多项式运算(35分)
    离散化
    Warshall算法求传递闭包及具体实现
    HDU-6185-Covering(推递推式+矩阵快速幂)
    链式前向星
    HDU Queuing(递推+矩阵快速幂)
    【node】------mongoose的基本使用------【巷子】
  • 原文地址:https://www.cnblogs.com/zqiguoshang/p/5744563.html
Copyright © 2020-2023  润新知