题目链接 https://leetcode.com/problems/4sum/?tab=Description
找到数组中满足 a+b+c+d=0的所有组合,要求不重复。
Basic idea is using subfunctions for 3sum and 2sum, and keeping throwing all impossible cases. O(n^3) time complexity, O(1) extra space complexity.
首先进行判断,由于是四个数相加等于target,其中可以通过判断剪去一些不必要的分支:
for (i = 0; i < len; i++) { z = nums[i]; if (i > 0 && z == nums[i - 1])// avoid duplicate continue; if (z + 3 * max < target) // z is too small continue; if (4 * z > target) // z is too large break; if (4 * z == target) { // z is the boundary if (i + 3 < len && nums[i + 3] == z) res.add(Arrays.asList(z, z, z, z)); break; } threeSumForFourSum(nums, target - z, i + 1, len - 1, res, z); }
进入3个数相加的同时,需要对target进行更新。
for (i = low; i < high - 1; i++) { z = nums[i]; if (i > low && z == nums[i - 1]) // avoid duplicate continue; if (z + 2 * max < target) // z is too small continue; if (3 * z > target) // z is too large break; if (3 * z == target) { // z is the boundary if (i + 1 < high && nums[i + 2] == z) fourSumList.add(Arrays.asList(z1, z, z, z)); break; } twoSumForFourSum(nums, target - z, i + 1, high, fourSumList, z1, z); }
进入两个数相加时,问题得到进一步简化。
int i = low, j = high, sum, x; while (i < j) { sum = nums[i] + nums[j]; if (sum == target) { fourSumList.add(Arrays.asList(z1, z2, nums[i], nums[j])); x = nums[i]; while (++i < j && x == nums[i]) // avoid duplicate ; x = nums[j]; while (i < --j && x == nums[j]) // avoid duplicate ; } if (sum < target) i++; if (sum > target) j--; }
参考代码:
package leetcode_50; import java.util.ArrayList; import java.util.Arrays; import java.util.List; /*** * * @author pengfei_zheng * 四个数加法等于target */ public class Solution18 { public List<List<Integer>> fourSum(int[] nums, int target) { ArrayList<List<Integer>> res = new ArrayList<List<Integer>>(); int len = nums.length; if (nums == null || len < 4) //不足4个元素 return res; Arrays.sort(nums);//排序 int max = nums[len - 1]; if (4 * nums[0] > target || 4 * max < target)//4个最小值之和超过target或者4个最大值之和小于target return res; int i, z; for (i = 0; i < len; i++) { z = nums[i]; if (i > 0 && z == nums[i - 1])// avoid duplicate continue; if (z + 3 * max < target) // z is too small continue; if (4 * z > target) // z is too large break; if (4 * z == target) { // z is the boundary if (i + 3 < len && nums[i + 3] == z) res.add(Arrays.asList(z, z, z, z)); break; } threeSumForFourSum(nums, target - z, i + 1, len - 1, res, z); } return res; } public void threeSumForFourSum(int[] nums, int target, int low, int high, ArrayList<List<Integer>> fourSumList, int z1) { if (low + 1 >= high) return; int max = nums[high]; if (3 * nums[low] > target || 3 * max < target) return; int i, z; for (i = low; i < high - 1; i++) { z = nums[i]; if (i > low && z == nums[i - 1]) // avoid duplicate continue; if (z + 2 * max < target) // z is too small continue; if (3 * z > target) // z is too large break; if (3 * z == target) { // z is the boundary if (i + 1 < high && nums[i + 2] == z) fourSumList.add(Arrays.asList(z1, z, z, z)); break; } twoSumForFourSum(nums, target - z, i + 1, high, fourSumList, z1, z); } } public void twoSumForFourSum(int[] nums, int target, int low, int high, ArrayList<List<Integer>> fourSumList, int z1, int z2) { if (low >= high) return; if (2 * nums[low] > target || 2 * nums[high] < target) return; int i = low, j = high, sum, x; while (i < j) { sum = nums[i] + nums[j]; if (sum == target) { fourSumList.add(Arrays.asList(z1, z2, nums[i], nums[j])); x = nums[i]; while (++i < j && x == nums[i]) // avoid duplicate ; x = nums[j]; while (i < --j && x == nums[j]) // avoid duplicate ; } if (sum < target) i++; if (sum > target) j--; } return; } }