• UVa 106


    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&page=show_problem&problem=42

     Fermat vs. Pythagoras 

    Background

    Computer generated and assisted proofs and verification occupy a small niche in the realm of Computer Science. The first proof of the four-color problem was completed with the assistance of a computer program and current efforts in verification have succeeded in verifying the translation of high-level code down to the chip level.

    This problem deals with computing quantities relating to part of Fermat's Last Theorem: that there are no integer solutions oftex2html_wrap_inline29 for n > 2.

    The Problem

    Given a positive integer N, you are to write a program that computes two quantities regarding the solution of

    displaymath22

    where xy, and z are constrained to be positive integers less than or equal to N. You are to compute the number of triples (x,y,z) such that x<yz, and they are relatively prime, i.e., have no common divisor larger than 1. You are also to compute the number of valuestex2html_wrap_inline51 such that p is not part of any triple (not just relatively prime triples).

    The Input

    The input consists of a sequence of positive integers, one per line. Each integer in the input file will be less than or equal to 1,000,000. Input is terminated by end-of-file.

    The Output

    For each integer N in the input file print two integers separated by a space. The first integer is the number of relatively prime triples (such that each component of the triple is tex2html_wrap_inline57 ). The second number is the number of positive integers tex2html_wrap_inline57 that are not part of any triple whose components are all tex2html_wrap_inline57 . There should be one output line for each input line.

    Sample Input

    10
    25
    100

    Sample Output

    1 4
    4 9
    16 27
    解题思路:

    这是一道数论题,用数学的语言描述就是:x, y, z∈N,给定一个数n,找出所有的x, y, z ≤ n,使得x2 + y2 = z2成立。如果要穷举所有的x, y, z的话,按照题目所给的数据量,肯定是无法在限定时间内完成的。考虑利用毕达哥拉斯数的性质生成所有的x, y, z来解决,数学推导简要介绍如下:

    先假定x, y, z两两互质,由于x, y互质,故x, y中至少有1个是奇数。下面用反证法证明x和y中有且只有1个奇数。假定x, y都为奇数,设:

    • x = 2a + 1
    • y = 2b + 1
    • x2 + y2 = (2a + 1)2 + (2b + 1)2 
      = 4(a2 + b2 + a + b) + 2

    又因为x2和y2是奇数,则z2是偶数,且必能被4整除,与上式矛盾,因此x, y中只有一个奇数。

    假设x为奇数,y为偶数,则z为奇数,2z与2x的最大公因数为2,2z和2x可分别写作

    • 2z = (z + x) + (z - x)
    • 2x = (z + x) - (z - x)

    那么跟据最大公因数性质,z + x和z - x的最大公因数也为2,又因为:

    • (z + x)(z - x) = y2,两边同除以4得:
      ((z + x) / 2)((z - x) / 2) = (y / 2)2

    故可令:

    • z + x = 2m2, z - x = 2n2
      其中z = m + n, x = m - n(m与n互质)

    则有:

    • y2 = z2 - x2 = 2m22n2 = 4m2n2
      即y = 2mn。

    综上所述,可得到下式:

    • x = m2 - n2, y = 2mn, z = m2 + n2. (m, n为任意自然数)

    这里还有一个问题:题目要求统计(x, y, z)三元组的数量时只统计x,y和z两两互质的的情况,这个问题用上面的算法就可以解决了。但对于统计p的数量,题目并不限定三元组是两两互质的。但是上式不能生成所有x, y, z并不是两两互质的情况。然而假设x与y最大公因数w不为1,则z也必能被w整除,因此w为x, y, z三个数的公因数。归纳总结可知,所有非两两互质的x0, y0, z0都可由一组互质的x, y, z乘以系数得到。根据以上理论就可以快速的求解了。



    参考代码:
     1 #include <cstdio>
     2 #include <cmath>
     3 #include <cstring>
     4 #define N 1000010
     5 bool used[N];
     6 
     7 long long gcd(long long a , long long b)
     8 { return b==0 ? a: gcd(b,a%b); }
     9 
    10 int main()
    11 {
    12     long long n,a,b,c;
    13     long long count1,count2;
    14     while(scanf("%lld",&n)!=EOF)
    15     {
    16         count1=count2=0;
    17         memset(used,0,sizeof(used));
    18         long long m=(long long)sqrt(n+0.5);
    19         for(long long t=1; t<=m; t+=2)
    20             for(long long s=t+2; s*t<=n; s+=2)
    21                 if(gcd(s,t)==1)  //s>t>=1且s与t互质
    22                 {
    23                     a=s*t;          //奇数
    24                     b=(s*s-t*t)/2;  //偶数
    25                     c=(s*s+t*t)/2;  //奇数
    26                     if(c<=n)        //在n范围内的PPT
    27                     {
    28                         count1++;
    29                         //printf("本原勾股数组:%lld %lld %lld
    ",a,b,c);
    30                         if(!used[a]) { count2++; used[a]=1; }
    31                         if(!used[b]) { count2++; used[b]=1; }
    32                         if(!used[c]) { count2++; used[c]=1; }
    33 
    34                         for(int j=2; c*j<=n; j++)  //j是倍数
    35                         {
    36                             if(!used[a*j]) { count2++; used[a*j]=1; }
    37                             if(!used[b*j]) { count2++; used[b*j]=1; }
    38                             if(!used[c*j]) { count2++; used[c*j]=1; }
    39                         }
    40                     }
    41                 }
    42             printf("%lld %lld
    ",count1,n-count2);
    43     }
    44     return 0;
    45 }
  • 相关阅读:
    【arc068E】Snuke Line
    Subseq
    【agc004F】Namori
    Yura
    【agc008F】Black Radius
    【arc080F】Prime Flip
    【arc075F】Mirrored
    【arc074E】RGB Sequence
    【bzoj3669】魔法森林
    【bzoj2500】幸福的道路
  • 原文地址:https://www.cnblogs.com/zpfbuaa/p/5049407.html
Copyright © 2020-2023  润新知