• hive的分区


    https://www.cnblogs.com/yongjian/p/6640951.html

    Hive分区的概念与传统关系型数据库分区不同。

    传统数据库的分区方式:就oracle而言,分区独立存在于段里,里面存储真实的数据,在数据进行插入的时候自动分配分区。

    Hive的分区方式:由于Hive实际是存储在HDFS上的抽象,Hive的一个分区名对应一个目录名,子分区名就是子目录名,并不是一个实际字段。

    所以可以这样理解,当我们在插入数据的时候指定分区,其实就是新建一个目录或者子目录,或者在原有的目录上添加数据文件。

    Hive分区的创建

    Hive分区是在创建表的时候用Partitioned by 关键字定义的,但要注意,Partitioned by子句中定义的列是表中正式的列,但是Hive下的数据文件中并不包含这些列,因为它们是目录名。

    静态分区

    创建一张静态分区表par_tab,单个分区

    create table par_tab (name string,nation string) partitioned by (sex string) row format delimited fields terminated by ',';

    这时候通过desc查看的表结构如下

    复制代码
    hive> desc par_tab;
    OK
    name                    string                                      
    nation                  string                                      
    sex                     string                                      
              
    # Partition Information          
    # col_name                data_type               comment             
              
    sex                     string                                      
    Time taken: 0.038 seconds, Fetched: 8 row(s)
    复制代码

    准备本地数据文件par_tab.txt,内容 “名字/国籍”,将以性别(sex)作为分区

    jan,china
    mary,america
    lilei,china
    heyong,china
    yiku,japan
    emoji,japan

    把数据插入到表(其实load操作相当于把文件移动到HDFS的Hive目录下)

    load data local inpath '/home/hadoop/files/par_tab.txt' into table par_tab partition (sex='man');

    这时候在hive下查询par_tab表,变成了3列,注意。

    复制代码
    hive> select * from par_tab;
    OK
    jan    china    man
    mary    america    man
    lilei    china    man
    heyong    china    man
    yiku    japan    man
    emoji    japan    man
    Time taken: 0.076 seconds, Fetched: 6 row(s)
    复制代码

    查看par_tab目录结构

    [hadoop@hadoop001 files]$ hadoop dfs -lsr /user/hive/warehouse/par_tab
    
    drwxr-xr-x   - hadoop supergroup          0 2017-03-29 08:25 /user/hive/warehouse/par_tab/sex=man
    -rwxr-xr-x   1 hadoop supergroup         71 2017-03-29 08:25 /user/hive/warehouse/par_tab/sex=man/par_tab.txt

    可以看到,在新建分区表的时候,系统会在hive数据仓库默认路径/user/hive/warehouse/下创建一个目录(表名),再创建目录的子目录sex=man(分区名),最后在分区名下存放实际的数据文件。

    如果再插入另一个数据文件数据,如文件

    lily,china
    nancy,china
    hanmeimei,america

    插入数据

    load data local inpath '/home/hadoop/files/par_tab_wm.txt' into table par_tab partition (sex='woman');

    查看par_tab表目录结构

    [hadoop@hadoop001 files]$ hadoop dfs -lsr /user/hive/warehouse/par_tab
    drwxr-xr-x   - hadoop supergroup          0 2017-03-29 08:25 /user/hive/warehouse/par_tab/sex=man
    -rwxr-xr-x   1 hadoop supergroup         71 2017-03-29 08:25 /user/hive/warehouse/par_tab/sex=man/par_tab.txt
    drwxr-xr-x   - hadoop supergroup          0 2017-03-29 08:35 /user/hive/warehouse/par_tab/sex=woman
    -rwxr-xr-x   1 hadoop supergroup         41 2017-03-29 08:35 /user/hive/warehouse/par_tab/sex=woman/par_tab_wm.txt

    最后查看两次插入的结果,包含了man和woman

    复制代码
    hive> select * from par_tab;
    OK
    jan    china    man
    mary    america    man
    lilei    china    man
    heyong    china    man
    yiku    japan    man
    emoji    japan    man
    lily    china    woman
    nancy    china    woman
    hanmeimei    america    woman
    Time taken: 0.136 seconds, Fetched: 9 row(s)
    复制代码

    因为分区列是表实际定义的列,所以查询分区数据时

    hive> select * from par_tab where sex='woman';
    OK
    lily    china    woman
    nancy    china    woman
    hanmeimei    america    woman
    Time taken: 0.515 seconds, Fetched: 3 row(s)

    下面创建一张静态分区表par_tab_muilt,多个分区(性别+日期)

    复制代码
    hive> create table par_tab_muilt (name string, nation string) partitioned by (sex string,dt string) row format delimited fields terminated by ',' ;
    hive> load data local inpath '/home/hadoop/files/par_tab.txt' into table par_tab_muilt partition (sex='man',dt='2017-03-29');
    
    
    [hadoop@hadoop001 files]$ hadoop dfs -lsr /user/hive/warehouse/par_tab_muilt
    drwxr-xr-x   - hadoop supergroup          0 2017-03-29 08:45 /user/hive/warehouse/par_tab_muilt/sex=man
    drwxr-xr-x   - hadoop supergroup          0 2017-03-29 08:45 /user/hive/warehouse/par_tab_muilt/sex=man/dt=2017-03-29
    -rwxr-xr-x   1 hadoop supergroup         71 2017-03-29 08:45 /user/hive/warehouse/par_tab_muilt/sex=man/dt=2017-03-29/par_tab.txt
    复制代码

    可见,新建表的时候定义的分区顺序,决定了文件目录顺序(谁是父目录谁是子目录),正因为有了这个层级关系,当我们查询所有man的时候,man以下的所有日期下的数据都会被查出来。如果只查询日期分区,但父目录sex=man和sex=woman都有该日期的数据,那么Hive会对输入路径进行修剪,从而只扫描日期分区,性别分区不作过滤(即查询结果包含了所有性别)。

    动态分区

    如果用上述的静态分区,插入的时候必须首先要知道有什么分区类型,而且每个分区写一个load data,太烦人。使用动态分区可解决以上问题,其可以根据查询得到的数据动态分配到分区里。其实动态分区与静态分区区别就是不指定分区目录,由系统自己选择。

    首先,启动动态分区功能

    hive> set hive.exec.dynamic.partition=true;

    假设已有一张表par_tab,前两列是名称name和国籍nation,后两列是分区列,性别sex和日期dt,数据如下

    复制代码
    hive> select * from par_tab;
    OK
    lily    china    man    2013-03-28
    nancy    china    man    2013-03-28
    hanmeimei    america    man    2013-03-28
    jan    china    man    2013-03-29
    mary    america    man    2013-03-29
    lilei    china    man    2013-03-29
    heyong    china    man    2013-03-29
    yiku    japan    man    2013-03-29
    emoji    japan    man    2013-03-29
    Time taken: 1.141 seconds, Fetched: 9 row(s)
    复制代码

    现在我把这张表的内容直接插入到另一张表par_dnm中,并实现sex为静态分区,dt动态分区(不指定到底是哪日,让系统自己分配决定)

    hive> insert overwrite table par_dnm partition(sex='man',dt)
        > select name, nation, dt from par_tab;

    插入后看下目录结构

    drwxr-xr-x   - hadoop supergroup          0 2017-03-29 10:32 /user/hive/warehouse/par_dnm/sex=man
    drwxr-xr-x   - hadoop supergroup          0 2017-03-29 10:32 /user/hive/warehouse/par_dnm/sex=man/dt=2013-03-28
    -rwxr-xr-x   1 hadoop supergroup         41 2017-03-29 10:32 /user/hive/warehouse/par_dnm/sex=man/dt=2013-03-28/000000_0
    drwxr-xr-x   - hadoop supergroup          0 2017-03-29 10:32 /user/hive/warehouse/par_dnm/sex=man/dt=2013-03-29
    -rwxr-xr-x   1 hadoop supergroup         71 2017-03-29 10:32 /user/hive/warehouse/par_dnm/sex=man/dt=2013-03-29/000000_0

    再查看分区数

    hive> show partitions par_dnm;
    OK
    sex=man/dt=2013-03-28
    sex=man/dt=2013-03-29
    Time taken: 0.065 seconds, Fetched: 2 row(s)

    证明动态分区成功。

    注意,动态分区不允许主分区采用动态列而副分区采用静态列,这样将导致所有的主分区都要创建副分区静态列所定义的分区。

    动态分区可以允许所有的分区列都是动态分区列,但是要首先设置一个参数hive.exec.dynamic.partition.mode :

    hive> set hive.exec.dynamic.partition.mode;
    hive.exec.dynamic.partition.mode=strict

    它的默认值是strick,即不允许分区列全部是动态的,这是为了防止用户有可能原意是只在子分区内进行动态建分区,但是由于疏忽忘记为主分区列指定值了,这将导致一个dml语句在短时间内创建大量的新的分区(对应大量新的文件夹),对系统性能带来影响。
    所以我们要设置:

    hive> set hive.exec.dynamic.partition.mode=nostrick;

    如有错漏,请通知改正。

  • 相关阅读:
    java SE连接mysql
    ubuntu_linux窗口显示文件路径方法Ctrl+L
    android studio安卓连接mysql数据库方法
    Java打开文件
    创建指定大小、指定数量的文件
    Java动态内存占用
    vite2 + vue3 开发组件库
    smallbin double linked list corrupted
    qt多线程信号槽传参不是继承QObject可能导致信号槽连接 无效 正常情况会直接报错
    postman tests常用脚本
  • 原文地址:https://www.cnblogs.com/zourui4271/p/12198466.html
Copyright © 2020-2023  润新知