• 机器学习---吴恩达---Week7(支持向量机学习SVM)


    Support Vector Machine(支持向量机)

    Optimization objective(优化目标)

    1.cost函数,下图左右分别对应于y取值1和0时的函数曲线,并且均有两段线组成

    2.相对于逻辑斯蒂回归,没有了(1/m)项

    3.正则部分不含有lambda值

    4.拟合损失部分包含C项,相当于(1/lambda)的作用,一般取值很大

    Large Margin Intuition(宽分类边距)

    一般分类阈值要求:

    实现:

    两种情况:C值not large时,分类边界区域类间中心位置,对特殊个例值有较好忽略作用,C值very large时,不具有这种效应, lambda很小。

    数学证明

      简单理解:C值很大时,相当于拟合损失部分权值很大,为了最小化损失函数值,正则化部分趋于很小,即||θ||取值很小,同时在计算时,为了使其绝对值大小满足分类要求,则要求θ方向与主体实验数据方向趋于一致,同时在分界线与θ垂直的前提下,可以明确分界线为两者的中间位置。

    Kernels(核)

    1.核函数有多种,这里举的例子是高斯核函数

    2.当取值点同landmark相近时,f值为1,;距离较远时,f值为0;

    3.对于高斯核函数,σ2小时,核函数下降较快,大时,核函数下降较慢

     SVM Parameters(SVM参数)

    1.C:大时,相当于小lambda,低偏差,高方差;小时相当于大lambda,高偏差,低方差

    2.σ2:大时,核函数平滑,下降慢,高偏差,低方差;小时,核函数陡峭,下降快,低偏差,高方差

    SVM使用

    1.求解一般直接使用封装好的库函数,极少自己求解,典型的库有liblinear和libsvm

    2.具体调制的一般是C和核函数

    3.核函数有许多种,一般用的时无核函数(线性核函数)和高斯核函数,其余还有多项式核函数以及其他

    4.高斯核函数使用前必须对原始数据进行特征缩放处理

    5.使用的核函数必须满足默赛尔定理

    Multi‐class Classification(多类别分类)

    2种方法:直接调用可函数和使用one vs. all方法

     逻辑思维回归与SVM比较总结

  • 相关阅读:
    单例模式
    自旋锁与互斥锁
    CAS无锁机制原理
    乐观锁和悲观锁
    读写锁
    Java锁机制-重入锁
    原 Linux搭建SVN 服务器2
    原 Linux搭建SVN 服务器
    Sublime Text 3 破解版 + 注册机 + 汉化包 + 教程
    Sublime Text 3 常用插件以及安装方法(转)
  • 原文地址:https://www.cnblogs.com/zouhq/p/10685884.html
Copyright © 2020-2023  润新知