• deeplearning.ai 作业中的Python常用命令


    1. print大法

    test = Hello World
    print ("test:" + test)
    

    2. math和numpy的区别:math只对单个元素,numpy会broadcasting。  

    import math
    import numpy as np
    x = [1, 2, 3]
    s = 1/(1+math.exp(-x)  #这条语句会报错
    s = 1/(1+np.exp(-x)) #这条语句没问题。
    

    3. 定义函数

    def sigmoid_derivative(x):
        s = 1/(1+np.exp(-x)
        ds = s*(1-s)
        return ds
    
    x = np.array([1, 2, 3])
    print ("sigmoid_derivative(x) = " + str(sigmoid_derivative(x))
    

    4. shape和reshape:array的维度是从最外层[]开始数,最外层[]的元素数量就是第一个维度的大小,最内层[]的元素数量是最后一个维度的大小。array的序号是从0开始的。

    reshape(x.shape[0], -1)中的-1是留这个维度给程序自己算出结果,其他维度必须指定。

    image = np.array([[[ 0.67826139,  0.29380381],
            [ 0.90714982,  0.52835647],
            [ 0.4215251 ,  0.45017551]],
    
           [[ 0.92814219,  0.96677647],
            [ 0.85304703,  0.52351845],
            [ 0.19981397,  0.27417313]],
    
           [[ 0.60659855,  0.00533165],
            [ 0.10820313,  0.49978937],
            [ 0.34144279,  0.94630077]],
                      
           [[ 0.85304703,  0.52835647],
            [ 0.10820313,  0.45017551],
            [ 0.34144279,  0.90714982]]])
    
    print ("image[3][2][1]: " + str(image[3][2][1])) # image[2][3][1]: 0.90714982
    
    print ("image.shape = " + str(image.shape))  # image.shape = (4, 3, 2)
    
    vector = image.reshape(image.shape[0]*image.shape[1]*image.shape[2], 1)
    print ("vector.shape = " + str(vector.shape)) # vector.shape = (24, 1)
    

    5. Normalization: x_norm = np.linalg.norm(x, ord = 2, axis = 1, keepdims = True),其中ord=2是默认值可以不写,axis=1是对横向量归一化,对于一维向量,axis只可以为0,keepdims=True是保持array的shape,防止出现(2, )这种shape,以防万一尽量都写上keepdims=True。

    x = np.array([[0,3,4],[2,6,4]])
    x_norm = np.linalg.norm(x, ord=2, axis =1, keepdims=True)
    x_new = x/x_norm
    print ("x: " + str(x))
    print ("x_norm: "+str(x_norm))
    print ("x_new: "+str(x_new))
    
    输出:
    x: [[0 3 4]
     [2 6 4]]
    x_norm: [[ 5.        ]
     [ 7.48331477]]
    x_new: [[ 0.          0.6         0.8       ]
     [ 0.26726124  0.80178373  0.53452248]]
    

    6. 求和:x_sum = np.sum(x, axis = 1, keepdims = True),其中axis=1是对第1个维度求和,比如shape是(4,2,3)的array,求和后是(4,1,3)。对于二维图像来说第1个维度就是横向量。

    x_sum = np.sum(x),是把x的所有元素都加起来得到一个scalar。尽量axis和keepdims的参数都填写,避免出错。

    x = np.array([[0,3,4],[2,6,4]])
    x_sum = np.sum(x, axis = 1, keepdims = True)
    print ("x_sum: "+str(x_sum))
    
    输出:
    x_sum: [[ 7]
     [12]]
    

    7. 不同的乘法:

    np.dot(x1, x2)对于矩阵是正常的矩阵乘法,对于一维向量是对应元素相乘再求和,Z = WX+b的WX部分就用np.dot。

    np.multiply(x1, x2)是一维向量对应元素相乘,得到一个一维向量。

    这里time是计时的方法。  

    import time
    
    x1 = [9, 2, 5, 0, 0, 7, 5, 0, 0, 0, 9, 2, 5, 0, 0]
    x2 = [9, 2, 2, 9, 0, 9, 2, 5, 0, 0, 9, 2, 5, 0, 0]
    
    ### 向量点乘,对应元素相乘再求和 ###
    tic = time.process_time()
    dot = np.dot(x1,x2)
    toc = time.process_time()
    print ("dot = " + str(dot) + "
     ----- Computation time = " + str(1000*(toc - tic)) + "ms")
    
    ### x1和x2的转置做矩阵乘法,n*1的矩阵乘以1*n的矩阵 ###
    tic = time.process_time()
    outer = np.outer(x1,x2)
    toc = time.process_time()
    print ("outer = " + str(outer) + "
     ----- Computation time = " + str(1000*(toc - tic)) + "ms")
    
    ### 对应元素相乘得到1*n的向量 ###
    tic = time.process_time()
    mul = np.multiply(x1,x2)
    toc = time.process_time()
    print ("elementwise multiplication = " + str(mul) + "
     ----- Computation time = " + str(1000*(toc - tic)) + "ms")
    
    ### 正常的矩阵乘法 ###
    W = np.random.rand(3,len(x1)) # Random 3*len(x1) numpy array
    tic = time.process_time()
    dot = np.dot(W,x1)
    toc = time.process_time()
    print ("gdot = " + str(dot) + "
     ----- Computation time = " + str(1000*(toc - tic)) + "ms")
    
    输出:
    dot = 278
     ----- Computation time = 0.0ms
    outer = [[81 18 18 81  0 81 18 45  0  0 81 18 45  0  0]
     [18  4  4 18  0 18  4 10  0  0 18  4 10  0  0]
     [45 10 10 45  0 45 10 25  0  0 45 10 25  0  0]
     [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
     [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
     [63 14 14 63  0 63 14 35  0  0 63 14 35  0  0]
     [45 10 10 45  0 45 10 25  0  0 45 10 25  0  0]
     [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
     [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
     [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
     [81 18 18 81  0 81 18 45  0  0 81 18 45  0  0]
     [18  4  4 18  0 18  4 10  0  0 18  4 10  0  0]
     [45 10 10 45  0 45 10 25  0  0 45 10 25  0  0]
     [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
     [ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]]
     ----- Computation time = 0.0ms
    elementwise multiplication = [81  4 10  0  0 63 10  0  0  0 81  4 25  0  0]
     ----- Computation time = 0.0ms
    gdot = [ 14.98632469  18.30746169  17.30396991]
     ----- Computation time = 0.0ms
    

    8. Broadcasting:loss = np.sum((yhat - y)**2, keepdims = True),这种**的运算,也是对每个元素计算平方。类似的+-*/也都是如此。

    9. 初始化: w = np.zeros((dim, 1), dtype=float),注意这里shape是要加括号的,例如w = np.zeros((4,2))。 

    10. 画图:matplotlib。

    import matplotlib.pyplot as plt
    
    # Plot learning curve (with costs)
    costs = np.squeeze(d['costs'])
    plt.plot(costs)
    plt.ylabel('cost')
    plt.xlabel('iterations (per hundreds)')
    plt.title("Learning rate =" + str(d["learning_rate"]))
    plt.show()  

    画散点图:plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral)。第一个参数和第二个参数分别是横轴和纵轴的坐标;参数c是指明散点颜色,一般用‘b’(蓝色)这种指明,这里使用Y这样的数值为0或者1的数组指明;参数s是散点的大小,数值越大点越大;cmap指明了颜色,这个网站列出了全部http://scipy-cookbook.readthedocs.io/items/Matplotlib_Show_colormaps.html。

    11. 图像处理:scipy

    改变图像尺寸:my_image = scipy.misc.imresize(image, size=(num_px,num_px))

      

      

      

  • 相关阅读:
    201521123104《Java程序设计》第7周学习总结
    201521123104 《Java程序设计》第6周学习总结
    201521123104 《Java程序设计》第5周学习总结
    201521123104《Java程序设计》第4周学习总结
    201521123104《JAVA程序设计》第三周学习总结
    201521123104 《JAVA程序设计》第二周学习总结
    201521123103 《java学习笔记》 第十二周学习总结
    201521123103 《Java学习笔记》 第十一周学习总结
    201521123103 《java学习笔记》 第十周学习总结
    201521123103 《Java学习笔记》 第九周学习总结
  • 原文地址:https://www.cnblogs.com/zonghaochen/p/7739899.html
Copyright © 2020-2023  润新知