• hdu 1536 博弈 SG函数(dfs)


    SG函数(dfs)模板   (测试成功)

    代码如下:
    int sg[10001];
    int f[101];
    // f[]为可以取的石子个数,k为f[]的长度
    sort(f,f+K);  // f[]必须是从小到大排列
    memset(sg,-1,sizeof(sg));  // sg[0]=0, 最小值为0 ,初始化
    int Get_SG(int x,int k)  // 计算sg[x]
    {
            int visited[101]={0};
            if(sg[x] != -1) return sg[x]; //  同一个集合, 如果已经计算过的sg[x], 可以重复利用
            if(x<f[0]) return sg[x]=0;
            for(int j=0; f[j]<=x && j<k; j++)  // visited 最多更改k次
                visited[Get_SG(x-f[j],k)]=1;
            for(int i=0;;i++)
                if(!visited[i]) return sg[x]=i;
    }

    题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=1536

    S-Nim

    Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 3845    Accepted Submission(s): 1685


    Problem Description
    Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:


      The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

      The players take turns chosing a heap and removing a positive number of beads from it.

      The first player not able to make a move, loses.


    Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:


      Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

      If the xor-sum is 0, too bad, you will lose.

      Otherwise, move such that the xor-sum becomes 0. This is always possible.


    It is quite easy to convince oneself that this works. Consider these facts:

      The player that takes the last bead wins.

      After the winning player's last move the xor-sum will be 0.

      The xor-sum will change after every move.


    Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win. 

    Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it? 

    your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.
     
    Input
    Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.
     
    Output
    For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.
     
    Sample Input
    2 2 5
    3
    2 5 12
    3 2 4 7
    4 2 3 7 12
    5 1 2 3 4 5
    3
    2 5 12
    3 2 4 7
    4 2 3 7 12
    0
     
    Sample Output
    LWW
    WWL
    分析: 此题 用到 SG函数 (dfs)模板
    #include<iostream>
    #include<stdlib.h>
    #include<stdio.h>
    #include<math.h>
    #include<string.h>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<map>
    #include<set>
    #define Inf 0x7fffffff // 0x 是数字0,而不是字母o
    #define N 10001
    using namespace std;
    int sg[N],K;
    int f[101];
    int Get_SG(int x)         
    {
            int visited[101]={0};
            if(sg[x] != -1) return sg[x]; //  同一个集合, 如果已经计算过的sg[x], 可以重复利用
            if(x<f[0]) return sg[x]=0;
            for(int j=0; f[j]<=x && j<K; j++)
                visited[Get_SG(x-f[j])]=1;
            for(int i=0;;i++)
                if(!visited[i]) return sg[x]=i;
    }
    int main(){
       int l,temp,x,m,Max;
       while(scanf("%d",&K) && K)
       {
           int x=0,Max=0;
           for(int i=0;i<K;i++)
               scanf("%d",&f[i]);
            sort(f,f+K);
            scanf("%d",&m);
            memset(sg,-1,sizeof(sg));
           while(m--)
           {
               scanf("%d",&l);
               x=0;
               for(int i=0 ;i<l; i++)
               {
                   scanf("%d",&temp);
                   x^=Get_SG(temp);
               }
               if(x) printf("W");
               else printf("L");
           }
           printf("
    ");
       }
        return 0;
    }
     
  • 相关阅读:
    算法---递归及尾递归
    ScheduledThreadPoolExecutor之remove方法
    数据结构---队列及简单实现有界队列
    数据结构---栈及四则运算实现
    数据结构---链表及约瑟夫环问题带来的思考
    数据结构---数组
    时间复杂度和空间复杂度
    Redis缓存设计与性能优化
    Springboot+ELK实现日志系统简单搭建
    Docker学习笔记(三):Dockerfile及多步骤构建镜像
  • 原文地址:https://www.cnblogs.com/zn505119020/p/3613519.html
Copyright © 2020-2023  润新知