• hdu 数论+ 欧拉函数 1787


    题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=1787

    GCD Again

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2239    Accepted Submission(s): 897


    Problem Description
    Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
    No? Oh, you must do this when you want to become a "Big Cattle".
    Now you will find that this problem is so familiar:
    The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: 
    Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
    This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
    Good Luck!
     
    Input
    Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
     
    Output
    For each integers N you should output the number of integers M in one line, and with one line of output for each line in input. 
     
    Sample Input
    2 4 0
     
    Sample Output
    0 1
     

     分析:

    1:欧拉函数euler(n)  定义为 小于 n 又和 n 互素的正整数的个数。

    n= p1^r1 * p2 ^r2 * …… * pk^rk

    erler(n)  = n (1- 1/p1) * (1 - 1/p2) * ……*(1- 1/pk)

                = p1^(r1-1)  * p2^(r2 -1)  *   ……* pk^(rk -1) *  (p1 -1) *(p2-1) ……*(pk - 1)

    2:则与n 不互素的个数为 n-1- erler(n)

    代码如下:

    #include<iostream>
    #include<stdlib.h>
    #include<stdio.h>
    #include<math.h>
    #include<string.h>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<map>
    using namespace std;
    // 欧拉函数
    int euler(int n)
    {
        int ans=1;
        int i;
        for(i=2;i*i <=n;i++)
        {
            if(n%i ==0)
            {
    
                ans*=i-1;
                n/=i;
                while(n%i ==0)
                {
                    ans*=i;
                    n/=i;
                }
            }
        }
        if(n!=1)     // 最后一个因子为n!=1,保存
            ans*=n-1;
        return ans;
    }
    
    int main()
    {
        int n;
        while(scanf("%d",&n)&& n)
        {
            printf("%d
    ", n-1 - euler(n));
        }
        return 0;
    }
  • 相关阅读:
    cisco route 831 IOS 备份升级ISO
    活动目录灾难恢复计划
    转载:IPsec的故障诊断与维修
    IPSEC结构
    诺基亚手机的安全保护。如何使你的手机丢失,被盗后依然安全。
    windows xp 同步故障:Unable to merge offline changes on \\ server_name \ share_name . The parameter is incorrect
    Google chart
    IPSEC的NAT兼容性
    Tom围棋(弈城围棋)运行错误:当前运行的版本是系统无法识别的版本
    IPSec NATT
  • 原文地址:https://www.cnblogs.com/zn505119020/p/3594336.html
Copyright © 2020-2023  润新知