• hdu 1299 整数分解 + map 质因子以及个数


    题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=1299

    Diophantus of Alexandria

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 2149    Accepted Submission(s): 813


    Problem Description
    Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first mathematicians to study equations where variables were restricted to integral values. In honor of him, these equations are commonly called diophantine equations. One of the most famous diophantine equation is x^n + y^n = z^n. Fermat suggested that for n > 2, there are no solutions with positive integral values for x, y and z. A proof of this theorem (called Fermat's last theorem) was found only recently by Andrew Wiles.

    Consider the following diophantine equation: 

    1 / x + 1 / y = 1 / n where x, y, n ∈ N+ (1)


    Diophantus is interested in the following question: for a given n, how many distinct solutions (i. e., solutions satisfying x ≤ y) does equation (1) have? For example, for n = 4, there are exactly three distinct solutions: 

    1 / 5 + 1 / 20 = 1 / 4
    1 / 6 + 1 / 12 = 1 / 4
    1 / 8 + 1 / 8 = 1 / 4



    Clearly, enumerating these solutions can become tedious for bigger values of n. Can you help Diophantus compute the number of distinct solutions for big values of n quickly?
     
    Input
    The first line contains the number of scenarios. Each scenario consists of one line containing a single number n (1 ≤ n ≤ 10^9). 
     
    Output
    The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Next, print a single line with the number of distinct solutions of equation (1) for the given value of n. Terminate each scenario with a blank line. 
     
    Sample Input
    2
    4
    1260
     
    Sample Output
    Scenario #1:
    3
     
     
    Scenario #2:
    113

     分析 :

    1/x + 1/y =1/n   

    n 10^9

    x> n y>n ,令 y= n+k  , 则 x = n*n/ k + n , 故需要找出满足 n*n /k 为整数的对数。(k  ,  n*n/k) , 

    命题: n = p1 ^ r1 * p2 ^ r2 …… pk ^ rk  ,  则 n 个因子个数为 ans = (r1 +1)*( r2 +1)* …… *(rk +1)

    n * n  的 因子个数为 ans2 = (2*r1 +1)*( 2*r2 +1)* …… *(2* rk +1)

    可以 组成的 整数对 (k  ,  n* n /k)  共有 ans2 /2 +1  (k=n 时是一种 ,  其他 重复一次)

    代码如下:

    #include<iostream>
    #include<stdlib.h>
    #include<stdio.h>
    #include<math.h>
    #include<string.h>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<map>
    using namespace std;
    map<int ,int >factor; //
    map<int ,int >::iterator it;
    void Prime(int n)
    {
        int i,num;
        for(i=2;i*i <= n;i++)
        {
            if(n %i ==0)
            {
                num=0;
                while(n%i == 0)
                {
                    num++;
                    n/=i;
                }
                factor[i]=num;  //记录以i为因子的个数
            }
    
        }
        if(n!=1)
            factor[n]=1;
    }
    
    int main()
    {
        int t,k=0,n,ans;
        cin>>t;
        while(t--)
        {
            ans=1;
            factor.clear();
            cin>>n;
            printf("Scenario #%d:
    ",++k);
            Prime(n);
            for(it=factor.begin(); it!= factor.end(); it++)
            {
                ans*=(2*it->second + 1);
            }
            printf("%d
    
    ", ans/2+1);
        }
        return 0;
    }
  • 相关阅读:
    Thinkphp中如何书写按照指定字段同步更新的ORM
    一道money计算题引发的思考
    娱乐一下:汤姆君的大转盘算法(搞笑版)
    php导出数组到csv格式demo
    通过xshell/securecrt连接linux上传/下载文件
    windows设置代理.bat 脚本
    【面试题】输入并保存文件,完成后退出显示文件内容
    【设计模式学习笔记】 之 状态模式
    【学习笔记】FreeMarker 之于Servlet与Stuts2的应用
    【学习笔记】初识FreeMarker简单使用
  • 原文地址:https://www.cnblogs.com/zn505119020/p/3592776.html
Copyright © 2020-2023  润新知