• LBP人脸识别的python实现


        这几天看了看LBP及其人脸识别的流程,并在网络上搜相应的python代码,有,但代码质量不好,于是自己就重新写了下,对于att_faces数据集的识别率能达到95.0%~99.0%(40种类型,每种随机选5张训练,5张识别),全部代码如下,不到80行哦。

    #coding:utf-8
    import numpy as np
    import cv2, os, math, os.path, glob, random
    
    g_mapping=[
        0, 1, 2, 3, 4, 58, 5, 6, 7, 58, 58, 58, 8, 58, 9, 10, 
        11, 58, 58, 58, 58, 58, 58, 58, 12, 58, 58, 58, 13, 58, 14, 15, 
        16, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 
        17, 58, 58, 58, 58, 58, 58, 58, 18, 58, 58, 58, 19, 58, 20, 21, 
        22, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 
        58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 
        23, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 
        24, 58, 58, 58, 58, 58, 58, 58, 25, 58, 58, 58, 26, 58, 27, 28, 
        29, 30, 58, 31, 58, 58, 58, 32, 58, 58, 58, 58, 58, 58, 58, 33, 
        58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 34, 
        58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 
        58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 35, 
        36, 37, 58, 38, 58, 58, 58, 39, 58, 58, 58, 58, 58, 58, 58, 40, 
        58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 41, 
        42, 43, 58, 44, 58, 58, 58, 45, 58, 58, 58, 58, 58, 58, 58, 46, 
        47, 48, 58, 49, 58, 58, 58, 50, 51, 52, 58, 53, 54, 55, 56, 57]
    
    def loadImageSet(folder, sampleCount=5):
        trainData = []; testData = []; yTrain=[]; yTest = [];
        for k in range(1,41):
            folder2 = os.path.join(folder, 's%d' %k)
            data = [cv2.imread(d.encode('gbk'),0) for d in glob.glob(os.path.join(folder2, '*.pgm'))]
            sample = random.sample(range(10), sampleCount)
            trainData.extend([data[i] for i in range(10) if i in sample])
            testData.extend([data[i] for i in range(10) if i not in sample])
            yTest.extend([k]* (10-sampleCount))
            yTrain.extend([k]* sampleCount)
        return trainData, testData, np.array(yTrain), np.array(yTest)
    
    def LBP(I, radius=2, count=8):       #得到图像的LBP特征
        dh = np.round([radius*math.sin(i*2*math.pi/count) for i in range(count)])
        dw = np.round([radius*math.cos(i*2*math.pi/count) for i in range(count)])
    
        height ,width = I.shape
        lbp = np.zeros(I.shape, dtype = np.int)
        I1 = np.pad(I, radius, 'edge')
        for k in range(count):
            h,w = radius+dh[k], radius+dw[k]
            lbp += ((I>I1[h:h+height, w:w+width])<<k)
        return lbp
    
    def calLbpHistogram(lbp, hCount=7, wCount=5, maxLbpValue=255): #分块计算lbp直方图
        height,width = lbp.shape
        res = np.zeros((hCount*wCount, max(g_mapping)+1), dtype=np.float)
        assert(maxLbpValue+1 == len(g_mapping))
        
        for h  in range(hCount):
            for w in range(wCount):
                blk = lbp[height*h/hCount:height*(h+1)/hCount, width*w/wCount:width*(w+1)/wCount]
                hist1 = np.bincount(blk.ravel(), minlength=maxLbpValue)
    
                hist = res[h*wCount+w,:]
                for v,k in zip(hist1, g_mapping):
                    hist[k] += v
                hist /= hist.sum()
        return res
        
    def main(folder=u'E:/迅雷下载/faceProcess/att_faces'):
        trainImg, testImg, yTrain, yTest = loadImageSet(folder)
        
        xTrain = np.array([calLbpHistogram(LBP(d)).ravel() for d in trainImg])
        xTest  = np.array([calLbpHistogram(LBP(d)).ravel() for d in testImg])
        
        lsvc = cv2.SVM()                              #支持向量机方法
        svm_params = dict( kernel_type = cv2.SVM_LINEAR, svm_type = cv2.SVM_C_SVC, C=2.67, gamma=5.383 )
        lsvc.train(np.float32(xTrain), np.float32(yTrain), params = svm_params)
        lsvc_y_predict = np.array( [lsvc.predict(d) for d in np.float32(xTest)])
        print u'支持向量机识别率', (lsvc_y_predict == np.array(yTest)).mean()  
    
    if __name__ == '__main__':
        main()
    

      下面是对mnist手写数字数据集的识别,修改了数据集的载入,并加了图像的倾斜校正,识别率达到96%(如果使用sklearn的svm,效率会更高一些。)

    import cPickle
    import gzip,math
    import numpy as np
    import os, glob, random, cv2
    
    SZ = 28
    def deskew(img):
        m = cv2.moments(img)
        if abs(m['mu02']) < 1e-2:
            return img.copy()
        skew = m['mu11']/m['mu02']
        M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
        img = cv2.warpAffine(img,M,(SZ, SZ),flags=cv2.WARP_INVERSE_MAP|cv2.INTER_LINEAR)
        return img
    
    g_mapping=[
        0, 1, 2, 3, 4, 58, 5, 6, 7, 58, 58, 58, 8, 58, 9, 10, 
        11, 58, 58, 58, 58, 58, 58, 58, 12, 58, 58, 58, 13, 58, 14, 15, 
        16, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 
        17, 58, 58, 58, 58, 58, 58, 58, 18, 58, 58, 58, 19, 58, 20, 21, 
        22, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 
        58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 
        23, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 
        24, 58, 58, 58, 58, 58, 58, 58, 25, 58, 58, 58, 26, 58, 27, 28, 
        29, 30, 58, 31, 58, 58, 58, 32, 58, 58, 58, 58, 58, 58, 58, 33, 
        58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 34, 
        58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 
        58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 35, 
        36, 37, 58, 38, 58, 58, 58, 39, 58, 58, 58, 58, 58, 58, 58, 40, 
        58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 41, 
        42, 43, 58, 44, 58, 58, 58, 45, 58, 58, 58, 58, 58, 58, 58, 46, 
        47, 48, 58, 49, 58, 58, 58, 50, 51, 52, 58, 53, 54, 55, 56, 57]
    
    def loadImageSet():
        with gzip.open('./mnist.pkl.gz') as fp:
            train_set, valid_set, test_set = cPickle.load(fp)
        
        xTrain = train_set[0]; s1 = xTrain.shape; xTrain = xTrain.reshape((s1[0],28,28))
        xTest = test_set[0];   s2 = xTest.shape;  xTest = xTest.reshape((s2[0],28,28))
        xTrain = np.array([deskew(d) for d in xTrain])
        xTest  = np.array([deskew(d) for d in xTest])
        return xTrain, xTest, train_set[1],  test_set[1]
    
    def LBP(I, radius=2, count=8):       #得到图像的LBP特征
        dh = np.round([radius*math.sin(i*2*math.pi/count) for i in range(count)])
        dw = np.round([radius*math.cos(i*2*math.pi/count) for i in range(count)])
    
        height ,width = I.shape
        lbp = np.zeros(I.shape, dtype = np.int)
        I1 = np.pad(I, radius, 'edge')
        for k in range(count):
            h,w = radius+dh[k], radius+dw[k]
            lbp += ((I>I1[h:h+height, w:w+width])<<k)
        return lbp
    
    def calLbpHistogram(lbp, hCount=2, wCount=2, maxLbpValue=255): #分块计算lbp直方图
        height,width = lbp.shape
        res = np.zeros((hCount*wCount, max(g_mapping)+1), dtype=np.float)
        assert(maxLbpValue+1 == len(g_mapping))
        
        for h  in range(hCount):
            for w in range(wCount):
                blk = lbp[height*h/hCount:height*(h+1)/hCount, width*w/wCount:width*(w+1)/wCount]
                hist1 = np.bincount(blk.ravel(), minlength=maxLbpValue)
    
                hist = res[h*wCount+w,:]
                for v,k in zip(hist1, g_mapping):
                    hist[k] += v
                hist /= hist.sum()
        return res
        
    def main():
        trainImg, testImg, yTrain, yTest = loadImageSet()
        
        xTrain = np.array([calLbpHistogram(LBP(d)).ravel() for d in trainImg])
        xTest  = np.array([calLbpHistogram(LBP(d)).ravel() for d in testImg])
        
        lsvc = cv2.SVM()                              #支持向量机方法
        svm_params = dict( kernel_type = cv2.SVM_LINEAR, svm_type = cv2.SVM_C_SVC, C=2.67, gamma=5.383 )
        lsvc.train(np.float32(xTrain), np.float32(yTrain), params = svm_params)
        lsvc_y_predict = np.array( [lsvc.predict(d) for d in np.float32(xTest)])
        print u'支持向量机', (lsvc_y_predict == np.array(yTest)).mean()  
        
    if __name__ == '__main__':
        main()
    

      

  • 相关阅读:
    python模块
    Django基础
    Python __str__(self)和__unicode__(self)
    Redis基本操作
    测试面试宝典
    h5页面的测试方式
    selenium IDE的使用流程
    如何安装chrome扩展程序--selenium IDE
    Selenium 中 强制等待、显示等待、隐式等待的区别
    Selenium+Python 自动化 之八种元素定位方法
  • 原文地址:https://www.cnblogs.com/zmshy2128/p/6150707.html
Copyright © 2020-2023  润新知