• 转】用Mahout构建职位推荐引擎


      原博文出自于:  http://blog.fens.me/hadoop-mahout-recommend-job/      感谢!

    用Mahout构建职位推荐引擎

    Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等。

    从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘。开源界及厂商,所有数据软件,无一不向Hadoop靠拢。Hadoop也从小众的高富帅领域,变成了大数据开发的标准。在Hadoop原有技术基础之上,出现了Hadoop家族产品,通过“大数据”概念不断创新,推出科技进步。

    作为IT界的开发人员,我们也要跟上节奏,抓住机遇,跟着Hadoop一起雄起!

    关于作者:

    • 张丹(Conan), 程序员Java,R,PHP,Javascript
    • weibo:@Conan_Z
    • blog: http://blog.fens.me
    • email: bsspirit@gmail.com

    转载请注明出处:
    http://blog.fens.me/hadoop-mahout-recommend-job/

    mahout-recommender-job

    前言

    随着大数据思想实施的落地,推荐系统也开始倍受关注。不光是电商,各种互联网应用都开始应用推荐系统,像搜索,社交网络,音乐,餐饮,地图服务等等。

    在以前,我们没有使用推荐算法的时候,我们是通过设置各种约束条件,匹配数据的自然属性呈现给用户,这种就是基于规则的系统。比如,用户购买了一个商品,我们会推荐同类别的其他商品,通过类别属性作为推荐的规则。后来问题就出现了,当用户一次性买了多种类别的不同商品的时候,前一条规则就失败了,我们要进一步设计规则,IT类别优先推荐,价格高的产品优先推荐…..几个回合下来,我们要不停的增加规则,以至于规则有可能的会前后冲突,增加一条新的规则会让推荐结果越来越不好,而且还无法解释是为什么。

    推荐算法从另一角度入手,解决了基于规则设置的问题。下面将用Mahout来构建一个职位推荐算法引擎。

    目录

    1. Mahout推荐框架概述
    2. 需求分析:职位推荐引擎指标设计
    3. 算法模型:推荐算法
    4. 架构设计:职位推荐引擎系统架构
    5. 程序开发:基于Mahout的推荐算法实现

    1. Mahout推荐系统框架概述

    Mahout框架包含了一套完整的推荐系统引擎,标准化的数据结构,多样的算法实现,简单的开发流程。Mahout推荐的推荐系统引擎是模块化的,分为5个主要部分组成:数据模型,相似度算法,近邻算法,推荐算法,算法评分器。

    更详细的介绍,请参考文章:从源代码剖析Mahout推荐引擎

    2. 需求分析:职位推荐引擎指标设计

    下面我们将从一个公司案例出发来全面的解释,如何进行职位推荐引擎指标设计。

    案例介绍:
    互联网某职业社交网站,主要产品包括 个人简历展示页,人脉圈,微博及分享链接,职位发布,职位申请,教育培训等。

    用户在完成注册后,需要完善自己的个人信息,包括教育背景,工作经历,项目经历,技能专长等等信息。然后,你要告诉网站,你是否想找工作!!当你选择“是”(求职中),网站会从数据库中为你推荐你可能感兴趣的职位。

    通过简短的描述,我们可以粗略地看出,这家职业社交网站的定位和主营业务。核心点有2个:

    • 用户:尽可能多的保存有效完整的用户资料
    • 服务:帮助用户找到工作,帮助猎头和企业找到员工

    因此,职位推荐引擎 将成为这个网站的核心功能。

    KPI指标设计

    • 通过推荐带来的职位浏览量: 职位网页的PV
    • 通过推荐带来的职位申请量: 职位网页的有效转化

    3. 算法模型:推荐算法

    2个测试数据集:

    • pv.csv: 职位被浏览的信息,包括用户ID,职位ID
    • job.csv: 职位基本信息,包括职位ID,发布时间,工资标准

    1). pv.csv

    • 2列数据:用户ID,职位ID(userid,jobid)
    • 浏览记录:2500条
    • 用户数:1000个,用户ID:1-1000
    • 职位数:200个,职位ID:1-200

    部分数据:

    1,11
    2,136
    2,187
    3,165
    3,1
    3,24
    4,8
    4,199
    5,32
    5,100
    6,14
    7,59
    7,147
    8,92
    9,165
    9,80
    9,171
    10,45
    10,31
    10,1
    10,152
    

    2). job.csv

    • 3列数据:职位ID,发布时间,工资标准(jobid,create_date,salary)
    • 职位数:200个,职位ID:1-200

    部分数据:

    1,2013-01-24,5600
    2,2011-03-02,5400
    3,2011-03-14,8100
    4,2012-10-05,2200
    5,2011-09-03,14100
    6,2011-03-05,6500
    7,2012-06-06,37000
    8,2013-02-18,5500
    9,2010-07-05,7500
    10,2010-01-23,6700
    11,2011-09-19,5200
    12,2010-01-19,29700
    13,2013-09-28,6000
    14,2013-10-23,3300
    15,2010-10-09,2700
    16,2010-07-14,5100
    17,2010-05-13,29000
    18,2010-01-16,21800
    19,2013-05-23,5700
    20,2011-04-24,5900
    

    为了完成KPI的指标,我们把问题用“技术”语言转化一下:我们需要让职位的推荐结果更准确,从而增加用户的点击。

    • 1. 组合使用推荐算法,选出“评估推荐器”验证得分较高的算法
    • 2. 人工验证推荐结果
    • 3. 职位有时效性,推荐的结果应该是发布半年内的职位
    • 4. 工资的标准,应不低于用户浏览职位工资的平均值的80%

    我们选择UserCF,ItemCF,SlopeOne的 3种推荐算法,进行7种组合的测试。

    • userCF1: LogLikelihoodSimilarity + NearestNUserNeighborhood + GenericBooleanPrefUserBasedRecommender
    • userCF2: CityBlockSimilarity+ NearestNUserNeighborhood + GenericBooleanPrefUserBasedRecommender
    • userCF3: UserTanimoto + NearestNUserNeighborhood + GenericBooleanPrefUserBasedRecommender
    • itemCF1: LogLikelihoodSimilarity + GenericBooleanPrefItemBasedRecommender
    • itemCF2: CityBlockSimilarity+ GenericBooleanPrefItemBasedRecommender
    • itemCF3: ItemTanimoto + GenericBooleanPrefItemBasedRecommender
    • slopeOne:SlopeOneRecommender

    关于的推荐算法的详细介绍,请参考文章:Mahout推荐算法API详解

    关于算法的组合的详细介绍,请参考文章:从源代码剖析Mahout推荐引擎

    4. 架构设计:职位推荐引擎系统架构

    mahout-recommend-job-architect

    上图中,左边是Application业务系统,右边是Mahout,下边是Hadoop集群。

    • 1. 当数据量不太大时,并且算法复杂,直接选择用Mahout读取CSV或者Database数据,在单机内存中进行计算。Mahout是多线程的应用,会并行使用单机所有系统资源。
    • 2. 当数据量很大时,选择并行化算法(ItemCF),先业务系统的数据导入到Hadoop的HDFS中,然后用Mahout访问HDFS实现算法,这时算法的性能与整个Hadoop集群有关。
    • 3. 计算后的结果,保存到数据库中,方便查询

    5. 程序开发:基于Mahout的推荐算法实现

    开发环境mahout版本为0.8。 ,请参考文章:用Maven构建Mahout项目

    新建Java类:

    • RecommenderEvaluator.java, 选出“评估推荐器”验证得分较高的算法
    • RecommenderResult.java, 对指定数量的结果人工比较
    • RecommenderFilterOutdateResult.java,排除过期职位
    • RecommenderFilterSalaryResult.java,排除工资过低的职位

    1). RecommenderEvaluator.java, 选出“评估推荐器”验证得分较高的算
    源代码:

    
    public class RecommenderEvaluator {
    
        final static int NEIGHBORHOOD_NUM = 2;
        final static int RECOMMENDER_NUM = 3;
    
        public static void main(String[] args) throws TasteException, IOException {
            String file = "datafile/job/pv.csv";
            DataModel dataModel = RecommendFactory.buildDataModelNoPref(file);
            userLoglikelihood(dataModel);
            userCityBlock(dataModel);
            userTanimoto(dataModel);
            itemLoglikelihood(dataModel);
            itemCityBlock(dataModel);
            itemTanimoto(dataModel);
            slopeOne(dataModel);
        }
    
        public static RecommenderBuilder userLoglikelihood(DataModel dataModel) throws TasteException, IOException {
            System.out.println("userLoglikelihood");
            UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.LOGLIKELIHOOD, dataModel);
            UserNeighborhood userNeighborhood = RecommendFactory.userNeighborhood(RecommendFactory.NEIGHBORHOOD.NEAREST, userSimilarity, dataModel, NEIGHBORHOOD_NUM);
            RecommenderBuilder recommenderBuilder = RecommendFactory.userRecommender(userSimilarity, userNeighborhood, false);
    
            RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
            RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
            return recommenderBuilder;
        }
    
        public static RecommenderBuilder userCityBlock(DataModel dataModel) throws TasteException, IOException {
            System.out.println("userCityBlock");
            UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.CITYBLOCK, dataModel);
            UserNeighborhood userNeighborhood = RecommendFactory.userNeighborhood(RecommendFactory.NEIGHBORHOOD.NEAREST, userSimilarity, dataModel, NEIGHBORHOOD_NUM);
            RecommenderBuilder recommenderBuilder = RecommendFactory.userRecommender(userSimilarity, userNeighborhood, false);
    
            RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
            RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
            return recommenderBuilder;
        }
    
        public static RecommenderBuilder userTanimoto(DataModel dataModel) throws TasteException, IOException {
            System.out.println("userTanimoto");
            UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.TANIMOTO, dataModel);
            UserNeighborhood userNeighborhood = RecommendFactory.userNeighborhood(RecommendFactory.NEIGHBORHOOD.NEAREST, userSimilarity, dataModel, NEIGHBORHOOD_NUM);
            RecommenderBuilder recommenderBuilder = RecommendFactory.userRecommender(userSimilarity, userNeighborhood, false);
    
            RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
            RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
            return recommenderBuilder;
        }
    
        public static RecommenderBuilder itemLoglikelihood(DataModel dataModel) throws TasteException, IOException {
            System.out.println("itemLoglikelihood");
            ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.LOGLIKELIHOOD, dataModel);
            RecommenderBuilder recommenderBuilder = RecommendFactory.itemRecommender(itemSimilarity, false);
    
            RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
            RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
            return recommenderBuilder;
        }
    
        public static RecommenderBuilder itemCityBlock(DataModel dataModel) throws TasteException, IOException {
            System.out.println("itemCityBlock");
            ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.CITYBLOCK, dataModel);
            RecommenderBuilder recommenderBuilder = RecommendFactory.itemRecommender(itemSimilarity, false);
    
            RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
            RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
            return recommenderBuilder;
        }
    
        public static RecommenderBuilder itemTanimoto(DataModel dataModel) throws TasteException, IOException {
            System.out.println("itemTanimoto");
            ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.TANIMOTO, dataModel);
            RecommenderBuilder recommenderBuilder = RecommendFactory.itemRecommender(itemSimilarity, false);
    
            RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
            RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
            return recommenderBuilder;
        }
    
        public static RecommenderBuilder slopeOne(DataModel dataModel) throws TasteException, IOException {
            System.out.println("slopeOne");
            RecommenderBuilder recommenderBuilder = RecommendFactory.slopeOneRecommender();
    
            RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
            RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
            return recommenderBuilder;
        }
    
        public static RecommenderBuilder knnLoglikelihood(DataModel dataModel) throws TasteException, IOException {
            System.out.println("knnLoglikelihood");
            ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.LOGLIKELIHOOD, dataModel);
            RecommenderBuilder recommenderBuilder = RecommendFactory.itemKNNRecommender(itemSimilarity, new NonNegativeQuadraticOptimizer(), 10);
    
            RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
            RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
    
            return recommenderBuilder;
        }
    
        public static RecommenderBuilder knnTanimoto(DataModel dataModel) throws TasteException, IOException {
            System.out.println("knnTanimoto");
            ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.TANIMOTO, dataModel);
            RecommenderBuilder recommenderBuilder = RecommendFactory.itemKNNRecommender(itemSimilarity, new NonNegativeQuadraticOptimizer(), 10);
    
            RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
            RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
    
            return recommenderBuilder;
        }
    
        public static RecommenderBuilder knnCityBlock(DataModel dataModel) throws TasteException, IOException {
            System.out.println("knnCityBlock");
            ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.CITYBLOCK, dataModel);
            RecommenderBuilder recommenderBuilder = RecommendFactory.itemKNNRecommender(itemSimilarity, new NonNegativeQuadraticOptimizer(), 10);
    
            RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
            RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
    
            return recommenderBuilder;
        }
    
        public static RecommenderBuilder svd(DataModel dataModel) throws TasteException {
            System.out.println("svd");
            RecommenderBuilder recommenderBuilder = RecommendFactory.svdRecommender(new ALSWRFactorizer(dataModel, 5, 0.05, 10));
    
            RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
            RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
    
            return recommenderBuilder;
        }
    
        public static RecommenderBuilder treeClusterLoglikelihood(DataModel dataModel) throws TasteException {
            System.out.println("treeClusterLoglikelihood");
            UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.LOGLIKELIHOOD, dataModel);
            ClusterSimilarity clusterSimilarity = RecommendFactory.clusterSimilarity(RecommendFactory.SIMILARITY.FARTHEST_NEIGHBOR_CLUSTER, userSimilarity);
            RecommenderBuilder recommenderBuilder = RecommendFactory.treeClusterRecommender(clusterSimilarity, 3);
    
            RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
            RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
    
            return recommenderBuilder;
        }
    }
    

    运行结果,控制台输出:

    
    userLoglikelihood
    AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:0.2741487771272658
    Recommender IR Evaluator: [Precision:0.6424242424242422,Recall:0.4098360655737705]
    userCityBlock
    AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:0.575306732961736
    Recommender IR Evaluator: [Precision:0.919580419580419,Recall:0.4371584699453552]
    userTanimoto
    AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:0.5546485136181523
    Recommender IR Evaluator: [Precision:0.6625766871165644,Recall:0.41803278688524603]
    itemLoglikelihood
    AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:0.5398332608612343
    Recommender IR Evaluator: [Precision:0.26229508196721296,Recall:0.26229508196721296]
    itemCityBlock
    AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:0.9251437840891661
    Recommender IR Evaluator: [Precision:0.02185792349726776,Recall:0.02185792349726776]
    itemTanimoto
    AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:0.9176432856689655
    Recommender IR Evaluator: [Precision:0.26229508196721296,Recall:0.26229508196721296]
    slopeOne
    AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:0.0
    Recommender IR Evaluator: [Precision:0.01912568306010929,Recall:0.01912568306010929]
    

    可视化“评估推荐器”输出:

    difference

    evaluator

    UserCityBlock算法评估的结果是最好的,基于UserCF的算法比ItemCF都要好,SlopeOne算法几乎没有得分。

    2). RecommenderResult.java, 对指定数量的结果人工比较
    为得到差异化结果,我们分别取UserCityBlock,itemLoglikelihood,对推荐结果人工比较。

    源代码:

    
    public class RecommenderResult {
    
        final static int NEIGHBORHOOD_NUM = 2;
        final static int RECOMMENDER_NUM = 3;
    
        public static void main(String[] args) throws TasteException, IOException {
            String file = "datafile/job/pv.csv";
            DataModel dataModel = RecommendFactory.buildDataModelNoPref(file);
            RecommenderBuilder rb1 = RecommenderEvaluator.userCityBlock(dataModel);
            RecommenderBuilder rb2 = RecommenderEvaluator.itemLoglikelihood(dataModel);
    
            LongPrimitiveIterator iter = dataModel.getUserIDs();
            while (iter.hasNext()) {
                long uid = iter.nextLong();
                System.out.print("userCityBlock    =>");
                result(uid, rb1, dataModel);
                System.out.print("itemLoglikelihood=>");
                result(uid, rb2, dataModel);
            }
        }
    
        public static void result(long uid, RecommenderBuilder recommenderBuilder, DataModel dataModel) throws TasteException {
            List list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
            RecommendFactory.showItems(uid, list, false);
        }
    
    }
    

    控制台输出:只截取部分结果

    
    ...
    userCityBlock    =>uid:968,(61,0.333333)
    itemLoglikelihood=>uid:968,(121,1.429362)(153,1.239939)(198,1.207726)
    userCityBlock    =>uid:969,
    itemLoglikelihood=>uid:969,(75,1.326499)(30,0.873100)(85,0.763344)
    userCityBlock    =>uid:970,
    itemLoglikelihood=>uid:970,(13,0.748417)(156,0.748417)(122,0.748417)
    userCityBlock    =>uid:971,
    itemLoglikelihood=>uid:971,(38,2.060951)(104,1.951208)(83,1.941735)
    userCityBlock    =>uid:972,
    itemLoglikelihood=>uid:972,(131,1.378395)(4,1.349386)(87,0.881816)
    userCityBlock    =>uid:973,
    itemLoglikelihood=>uid:973,(196,1.432040)(140,1.398066)(130,1.380335)
    userCityBlock    =>uid:974,(19,0.200000)
    itemLoglikelihood=>uid:974,(145,1.994049)(121,1.794289)(98,1.738027)
    ...
    

    我们查看uid=974的用户推荐信息:

    搜索pv.csv:

    
    > pv[which(pv$userid==974),]
         userid jobid
    2426    974   106
    2427    974   173
    2428    974    82
    2429    974   188
    2430    974    78
    

    搜索job.csv:

    
    > job[job$jobid %in% c(145,121,98,19),]
        jobid create_date salary
    19     19  2013-05-23   5700
    98     98  2010-01-15   2900
    121   121  2010-06-19   5300
    145   145  2013-08-02   6800
    

    上面两种算法,推荐的结果都是2010年的职位,这些结果并不是太好,接下来我们要排除过期职位,只保留2013年的职位。

    3).RecommenderFilterOutdateResult.java,排除过期职位
    源代码:

    
    
    public class RecommenderFilterOutdateResult {
    
        final static int NEIGHBORHOOD_NUM = 2;
        final static int RECOMMENDER_NUM = 3;
    
        public static void main(String[] args) throws TasteException, IOException {
            String file = "datafile/job/pv.csv";
            DataModel dataModel = RecommendFactory.buildDataModelNoPref(file);
            RecommenderBuilder rb1 = RecommenderEvaluator.userCityBlock(dataModel);
            RecommenderBuilder rb2 = RecommenderEvaluator.itemLoglikelihood(dataModel);
    
            LongPrimitiveIterator iter = dataModel.getUserIDs();
            while (iter.hasNext()) {
                long uid = iter.nextLong();
                System.out.print("userCityBlock    =>");
                filterOutdate(uid, rb1, dataModel);
                System.out.print("itemLoglikelihood=>");
                filterOutdate(uid, rb2, dataModel);
            }
        }
    
        public static void filterOutdate(long uid, RecommenderBuilder recommenderBuilder, DataModel dataModel) throws TasteException, IOException {
            Set jobids = getOutdateJobID("datafile/job/job.csv");
            IDRescorer rescorer = new JobRescorer(jobids);
            List list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM, rescorer);
            RecommendFactory.showItems(uid, list, true);
        }
    
        public static Set getOutdateJobID(String file) throws IOException {
            BufferedReader br = new BufferedReader(new FileReader(new File(file)));
            Set jobids = new HashSet();
            String s = null;
            while ((s = br.readLine()) != null) {
                String[] cols = s.split(",");
                SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
                Date date = null;
                try {
                    date = df.parse(cols[1]);
                    if (date.getTime() < df.parse("2013-01-01").getTime()) {
                        jobids.add(Long.parseLong(cols[0]));
                    }
                } catch (ParseException e) {
                    e.printStackTrace();
                }
    
            }
            br.close();
            return jobids;
        }
    
    }
    
    class JobRescorer implements IDRescorer {
        final private Set jobids;
    
        public JobRescorer(Set jobs) {
            this.jobids = jobs;
        }
    
        @Override
        public double rescore(long id, double originalScore) {
            return isFiltered(id) ? Double.NaN : originalScore;
        }
    
        @Override
        public boolean isFiltered(long id) {
            return jobids.contains(id);
        }
    }
    

    控制台输出:只截取部分结果

    
    ...
    itemLoglikelihood=>uid:965,(200,0.829600)(122,0.748417)(170,0.736340)
    userCityBlock    =>uid:966,(114,0.250000)
    itemLoglikelihood=>uid:966,(114,1.516898)(101,0.864536)(99,0.856057)
    userCityBlock    =>uid:967,
    itemLoglikelihood=>uid:967,(105,0.873100)(114,0.725016)(168,0.707119)
    userCityBlock    =>uid:968,
    itemLoglikelihood=>uid:968,(174,0.735004)(39,0.696716)(185,0.696171)
    userCityBlock    =>uid:969,
    itemLoglikelihood=>uid:969,(197,0.723203)(81,0.710230)(167,0.668358)
    userCityBlock    =>uid:970,
    itemLoglikelihood=>uid:970,(13,0.748417)(122,0.748417)(28,0.736340)
    userCityBlock    =>uid:971,
    itemLoglikelihood=>uid:971,(28,1.540753)(174,1.511881)(39,1.435575)
    userCityBlock    =>uid:972,
    itemLoglikelihood=>uid:972,(14,0.800605)(60,0.794088)(163,0.710230)
    userCityBlock    =>uid:973,
    itemLoglikelihood=>uid:973,(56,0.795529)(13,0.712680)(120,0.701026)
    userCityBlock    =>uid:974,(19,0.200000)
    itemLoglikelihood=>uid:974,(145,1.994049)(89,1.578694)(19,1.435193)
    ...
    

    我们查看uid=994的用户推荐信息:
    搜索pv.csv:

    
    > pv[which(pv$userid==974),]
         userid jobid
    2426    974   106
    2427    974   173
    2428    974    82
    2429    974   188
    2430    974    78
    

    搜索job.csv:

    
    > job[job$jobid %in% c(19,145,89),]
        jobid create_date salary
    19     19  2013-05-23   5700
    89     89  2013-06-15   8400
    145   145  2013-08-02   6800
    

    排除过期的职位比较,我们发现userCityBlock结果都是19,itemLoglikelihood的第2,3的结果被替换为了得分更低的89和19。

    4).RecommenderFilterSalaryResult.java,排除工资过低的职位

    我们查看uid=994的用户,浏览过的职位。

    
    > job[job$jobid %in% c(106,173,82,188,78),]
        jobid create_date salary
    78     78  2012-01-29   6800
    82     82  2010-07-05   7500
    106   106  2011-04-25   5200
    173   173  2013-09-13   5200
    188   188  2010-07-14   6000
    

    平均工资为=6140,我们觉得用户的浏览职位的行为,一般不会看比自己现在工资低的职位,因此设计算法,排除工资低于平均工资80%的职位,即排除工资小于4912的推荐职位(6140*0.8=4912)

    大家可以参考上文中RecommenderFilterOutdateResult.java,自行实现。

    这样,我们就完成用Mahout构建职位推荐引擎的算法。如果没有Mahout,我们自己写这个算法引擎估计还要花个小半年的时间,善加利用开源技术会帮助我们飞一样的成长!!

    原代码下载:
    https://github.com/bsspirit/maven_mahout_template/tree/mahout-0.8/src/main/java/org/conan/mymahout/recommendation/job

    ######################################################
    看文字不过瘾,作者视频讲解,请访问网站:http://onbook.me/video
    ######################################################

    转载请注明出处:
    http://blog.fens.me/hadoop-mahout-recommend-job/

  • 相关阅读:
    自学Zabbix8.1 Regular expressions 正则表达式
    自学Zabbix7.1 IT services
    自学Zabbix6.1 Event acknowledgment 事件确认
    自学Zabbix5.1 zabbix maintenance维护周期
    自学Zabbix4.3 zabbix实战监控Web网站性能
    自学Zabbix4.2.1 Application介绍
    自学Zabbix4.2 web监控项创建+item详解
    自学Zabbix4.1 zabbix监控web服务器访问性能
    自学Zabbix3.11-宏Macros
    自学Zabbix3.10.2-事件通知Notifications upon events-Actions报警配置
  • 原文地址:https://www.cnblogs.com/zlslch/p/6039747.html
Copyright © 2020-2023  润新知