• MapReduce 开发环境搭建(EclipseMyEclipse + Maven)


    写在前面的话

        可详细参考,一定得去看

    HBase 开发环境搭建(EclipseMyEclipse + Maven)

    Zookeeper项目开发环境搭建(EclipseMyEclipse + Maven)

    Hive项目开发环境搭建(EclipseMyEclipse + Maven)

      我这里,相信,能看此博客的朋友,想必是有一定基础的了。我前期写了大量的基础性博文。可以去补下基础。

    步骤一:File  ->  New  -> Project   ->  Maven Project

     步骤二:自行设置,待会创建的myHBase工程,放在哪个目录下。

     步骤三:

     步骤四:自行设置

     步骤五:修改jdk

    省略,很简单!

     步骤六:修改pom.xml配置文件

    官网Maven的zookeeper配置文件内容:

    地址:http://www.mvnrepository.com/search?q=mapreduce

     

     

      因为我的hadoop版本是hadoop-2.6.0

    参考: http://blog.csdn.net/e421083458/article/details/45792111

    1、

    2、

     

     暂时这些吧,以后需要,可以自行再加呢!

     

     最后的pom.xml配置文件为

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>zhouls.bigdata</groupId>
    <artifactId>myMapreduce</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <packaging>jar</packaging>

    <name>myMapreduce</name>
    <url>http://maven.apache.org</url>

    <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <dependencies>
    <dependency>
    <groupId>junit</groupId>
    <artifactId>junit</artifactId>
    <version>3.8.1</version>
    <scope>test</scope>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common -->
    <dependency>
    <groupId>org.apache.hadoop</groupId>
    <artifactId>hadoop-common</artifactId>
    <version>2.6.0</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-core -->
    <dependency>
    <groupId>org.apache.hadoop</groupId>
    <artifactId>hadoop-mapreduce-client-core</artifactId>
    <version>2.6.0</version>
    </dependency>
    </dependencies>
    </project>

     当然,这只是初步而已,最简单的,以后可以自行增删。

    步骤七:这里,给大家,通过一组简单的Hive应用程序实例来向大家展示Hive的某些功能。

      类名为MapReduceTestCase.java

    package zhouls.bigdata.myMapreduce;


    import java.io.IOException;
    import java.util.StringTokenizer;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

    public class MapReduceTestCase
    {
    public static class TokenizerMapper
    extends Mapper<Object, Text, Text, IntWritable>{

    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(Object key, Text value, Context context
    ) throws IOException, InterruptedException {
    StringTokenizer itr = new StringTokenizer(value.toString());
    while (itr.hasMoreTokens()) {
    word.set(itr.nextToken());
    context.write(word, one);
    }
    }
    }

    public static class IntSumReducer
    extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values,
    Context context
    ) throws IOException, InterruptedException {
    int sum = 0;
    for (IntWritable val : values) {
    sum += val.get();
    }
    result.set(sum);
    context.write(key, result);
    }
    }

    public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    Job job = Job.getInstance(conf, "word count");
    job.setJarByClass(MapReduceTestCase.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path("hdfs:/HadoopMaster:9000/djt.txt"));
    FileOutputFormat.setOutputPath(job, new Path("hdfs:/HadoopMaster:9000/word-count"));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
    }

    或者

    package zhouls.bigdata.myMapreduce;

    import java.io.IOException;

    import java.util.regex.Pattern;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.conf.Configured;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.Tool;
    import org.apache.hadoop.util.ToolRunner;


    /**
    * 基于样本数据做Hadoop工程师薪资统计:计算各工作年限段的薪水范围
    */
    public class SalaryCount extends Configured implements Tool
    {
    public static class SalaryMapper extends Mapper<LongWritable, Text, Text, Text>
    {
    public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException
    {
    // 美团 3-5年经验 15-30k 北京 【够牛就来】hadoop高级工程...
    //北信源 3-5年经验 15-20k 北京 Java高级工程师(有Hadoo...
    // 蘑菇街 3-5年经验 10-24k 杭州 hadoop开发工程师

    //第一步,将输入的纯文本文件的数据转化成String
    String line = value.toString();//读取每行数据

    String[] record = line.split( "\s+");//使用空格正则解析数据
    //key=record[1]:输出3-5年经验
    //value=record[2]:15-30k
    //作为Mapper输出,发给 Reduce 端

    //第二步
    if(record.length >= 3)//因为取得的薪资在第3列,所以要大于3
    {
    context.write( new Text(record[1]), new Text(record[2]) );
    //Map输出,record数组的第2列,第3列
    }
    }
    }
    public static class SalaryReducer extends Reducer< Text, Text, Text, Text>
    {
    public void reduce(Text Key, Iterable< Text> Values, Context context) throws IOException, InterruptedException
    {

    int low = 0;//记录最低工资
    int high = 0;//记录最高工资
    int count = 1;
    //针对同一个工作年限(key),循环薪资集合(values),并拆分value值,统计出最低工资low和最高工资high
    for (Text value : Values)
    {
    String[] arr = value.toString().split("-");//其中的一行而已,15 30K
    int l = filterSalary(arr[0]);//过滤数据 //15
    int h = filterSalary(arr[1]);//过滤数据 //30
    if(count==1 || l< low)
    {
    low = l;
    }
    if(count==1 || h>high)
    {
    high = h;
    }
    count++;
    }
    context.write(Key, new Text(low + "-" +high + "k"));//即10-30K
    }
    }
    //正则表达式提取工资值,因为15 30k,后面有k,不干净
    public static int filterSalary(String salary)//过滤数据
    {
    String sal = Pattern.compile("[^0-9]").matcher(salary).replaceAll("");
    return Integer.parseInt(sal);
    }


    public int run(String[] args) throws Exception
    {
    //第一步:读取配置文件
    Configuration conf = new Configuration();//读取配置文件

    //第二步:输出路径存在就先删除
    Path out = new Path(args[1]);//定义输出路径的Path对象,mypath
    FileSystem hdfs = out.getFileSystem(conf);//通过路径下的getFileSystem来获得文件系统
    if (hdfs.isDirectory(out))
    {//删除已经存在的输出目录
    hdfs.delete(out, true);
    }
    //第三步:构建job对象
    Job job = new Job(conf, "SalaryCount" );//新建一个任务
    job.setJarByClass(SalaryCount.class);//设置 主类
    //通过job对象来设置主类SalaryCount.class

    //第四步:指定数据的输入路径和输出路径
    FileInputFormat.addInputPath(job, new Path(args[0]));// 文件输入路径
    FileOutputFormat.setOutputPath(job, new Path(args[1]));// 文件输出路径

    //第五步:指定Mapper和Reducer
    job.setMapperClass(SalaryMapper.class);// Mapper
    job.setReducerClass(SalaryReducer.class);// Reducer

    //第六步:设置map函数和reducer函数的输出类型
    job.setOutputKeyClass(Text.class);//输出结果key类型
    job.setOutputValueClass(Text.class);//输出结果的value类型

    //第七步:提交作业
    job.waitForCompletion(true);//等待完成退出作业

    return 0;
    }


    /**
    * @param args 输入文件、输出路径,可在Eclipse中Run Configurations中配Arguments,如:
    * hdfs://HadoopMaster:9000/salary.txt
    * hdfs://HadoopMaster:9000/salary/out
    */
    public static void main(String[] args) throws Exception
    {
    //第一步
    String[] args0 =
    {
    "hdfs://HadoopMaster:9000/salary/",
    "hdfs://HadoopMaster:9000/salary/out"
    };
    //第二步
    int ec = ToolRunner.run(new Configuration(), new SalaryCount(), args0);
    //第一个参数是读取配置文件,第二个参数是主类Temperature,第三个参数是输如路径和输出路径的属组
    System.exit(ec);

    }
    }

  • 相关阅读:
    16 | 网络优化(中):复杂多变的移动网络该如何优化?
    Understanding Temporal Metrics
    Objective-C Runtime 大佬系列文章整理
    面向对象编程中的封装、抽象、继承、多态特性以及应用
    面向接口编程原理
    一次HTTP请求的完整过程——协议篇(DNS、TCP、HTTP)
    计算机网络 | 图解 DNS & HTTPDNS 原理
    CDN的加速原理是什么?
    让WKWebview支持NSURLProtocol总结
    WKWebView 请求拦截
  • 原文地址:https://www.cnblogs.com/zlslch/p/6025694.html
Copyright © 2020-2023  润新知