路由器
路由器是一种多端口设备,它可以连接不同传输速率并运行于各种环境的局域网和广域网,也可以采用不同的协议。路由器属于O S I模型的第三层。第2章曾经讲过,网络层指导从一个网段到另一个网段的数据传输,也能指导从一种网络向另一种网络的数据传输。过去,由于过多的注意第三层或更高层的数据,如协议或逻辑地址,路由器曾经比交换机和网桥的速度慢。因此,不像网桥和第二层交换机,路由器是依赖于协议的。在它们使用某种协议转发数据前,它们必须要被设计或配置成能识别该协议。
正如讨论网桥时所举的例子一样,传统的独立式局域网路由器正慢慢地被支持路由功能的第三层交换机所替代。但路由器这个概念还是非常重要的。本节的剩余部分讲述的都是关于第三层交换机的应用。独立式路由器仍然是使用广域网技术连接远程用户的一种选择。
注:路由器与其它设备不能,它即可以隔离冲突域,同时也可以隔离广播域。
参考:http://book.51cto.com/art/200706/49425.htm
路由器的特征和功能
路由器的稳固性在于它的智能性。路由器不仅能追踪网络的某一节点,还能和交换机一样,选择出两节点间的最近、最快的传输路径。基于这个原因,还因为它们可以连接不同类型的网络,使得它们成为大型局域网和广域网中功能强大且非常重要的设备。例如,因特网就是依靠遍布全世界的几百万台路由器连接起来的。
通常可以路越路由器进行数据包路由的协议有TCP/IP、IPX/SPX和AppleTalk 协议,另外,NetBeui协议是不可以跨越路由器进行数据包路由的。
典型的路由器内部都带有自己的处理器、内存、电源以及为各种不同类型的网络连接接口如:Console、ISDN、AUI、Serial和Ethernet端口等等。而准备的输入输出插座,通常还具有如图6-17所示的管理控制台接口。功能强大并能支持各种协议的路由器有好几种插槽埠,以用来容纳各种网络接口( R -45、BNC、FDDI、ISDN,等等)。具有多种插槽以支持不同接口卡或设备的路由器被称为堆叠式路由器。路由器使用起来非常灵活。尽管每一台路由器都可以被指定以执行不同的任务,但所有的路由器都可以完成下面的工作:连接不同的网络、解析第三层信息、连接从A点到B点的最优数据传输路径,并且,如果在主路径中断后还可以通过其他可用路径重新路由。
路由器的主要特点:
(1)路由器可以互连不同的MAC协议、不同的传输介质、不同的拓扑结构和不同的传输速率的异种网,它有很强的异种网互连能力。
(2)路由器也是用于广域网互连的存储转发设备,它有很强的广域网互连能力,被广泛地应用于LAN-WAN-LAN的网络互联环境。
(3)路由器互连不同的逻辑子网,每一个子网都是一个独立的广播域,因此,路由器不在子网之间转发广播信息,具有很强的隔离广播信息的能力。
(4)路由器具有流量控制、拥塞控制功能,能够对不同速率的网络进行速度匹配,以保证数据包的正确传输。
(5)路由器工作在网络层,它与网络层协议有关。多协议路由器可以支持多种网络层协议(如:TCP/IP、IPX、DECNET 等),转发多种网络层协议的数据包。
(6)路由器检查网络层地址,转发网络层数据分组(Packet)。因此,路由器能够基于IP地址进行数据包过滤,路由器使用ACL(Access Control List,访问控制列表)进行控制各种协议封装的数据包,同样也会对TCP、UDP协议的端口号进行数据过滤。
(7)对大型网络进行微段化,将分段后的网段用路由器连接起来。这样可以达到提高网络性能,提高网络带宽,而且便于网络的管理和维护。这也是共享式网络为解决带宽问题所经常采用的方法。
(8)路由器不仅可以在中、小型局域网中应用,也适合在广域网和大型、复杂的互联网络环境中应用。
(9)可以隔离冲突域和广播域。
由于它的可定制性,安装路由器并非易事。一般而言,技术人员或工程师必须对路由技术非常熟悉才能知道如何放置和设置路由器方可发挥出其最好的效能。图6-20示出了关于路由器在网络中是如何连接的一些思路,尽管这个例子有些过于简单了。第7章将讲述用于广域网中的路由器的有关知识。如果打算设计一个专用网络或配置路由器,就应该对路由器技术研究得更深入一些。
在图6-20所示的设计中,如果工作组C中的工作站想使用工作组A的打印机,就要创建一个包含工作组A中的打印机地址的连接。然后才能把数据包传送到集线器C。当路由器C接收到传输的数据后,在解析第三层数据时,路由器C就会暂存这个数据包。一旦发现数据包要传向工作组A中的打印机,路由器C就会选择最优路径把数据包传送到工作组A中的打印机。在这个例子中,也许会把数据包直接传向路由器A。在它转发该数据包前,路由器就增加该数据包尾部的中继次数。然后,路由器C就把数据包转发到路由器A,路由器A解析出数据包的目标地址后再把它转发至集线器A。再由集线器A向工作组A中的所有用户传播此次传输,直到打印机A响应为止。
路由器的分类
1.本地路由器
所谓本地路由器指的是如图6-20上所示,各网段之间使用路由器来连接,但是只在一个有限的区域网内部的,没有跨越远程连接。
2.远程路由器
无论是本地路由器还是本地路由器,路由器的本质没有变,还是路由器,只不过远程路由器指的是路由器连接的网段是分部在不同区域的远程网络,如图6-21下所示。
路由协议(RIP、OSPF、EIGRP和BGP)
对于路由器而言,要找出最优的数据传输路径是一件比较有意义却很复杂的工作。最优路径有可能会有赖于节点间的转发次数、当前的网络运行状态、不可用的连接、数据传输速率和拓扑结构。为了找出最优路径,各个路由器间要通过路由协议来相互通信。需要区别的一点是:路由协议与可路由的协议是不是等同的。如TCP/IP和IPX/SPX,尽管它们可能处于可路由的协议的顶端。路由协议只用于收集关于网络当前状态的数据并负责寻找最优传输路径。根据这些数据,路由器就可以创建路由表来用于以后的数据包转发。除了寻找最优路径的能力之外,路由协议还可以用收敛时间—路由器在网络发生变化或断线时寻找出最优传输路径所耗费的时间来表征。带宽开销—运行中的网络为支持路由
协议所需要的带宽,也是一个较显著的特征。尽管并不需要精确地知道路由协议的工作原理,你还是应该对最常见的路由协议有所了解:RIP、OSPF、EIGRP和BGP(还有更多的其他路由协议,但它们使用得并不广泛)此外还IGRP路由选择协议,它是Cisco公司设备专用协议,其它非Cisco设备不能使用这样协议。对这四种常见的路由协议描述如下。
(1) 为IP和IPX设计的RIP(路由信息协议):RIP是一种最早先的路由协议,但现在仍然被广泛使用,这是由于它在选择两点间的最优路径时只考虑节点间的中继次数这个原因的缘故。例如,它不考虑网络的拥塞状况和连接速率这些因素。使用RIP的路由器每30秒钟向其他路由器广播一次自己的路由表。这种广播会造成极大的数据传输量,特别是网络中存在有大量的路由器时。如果路由表改变了,新的信息要传输到网络中较远的地方,可能就会花费几分钟的时间;所以RIP的收敛时间是非常长的。而且, RIP还限制中继次数不能超过16跳(经过16台路由器设备)。所以,在一个大型网络中,如果数据要被中继16跳以上,它就不能再传输了。而且,与其他类型的路由协议相比, RIP还要慢一些,而安全性却差一些。
(2)为IP设计的OSPF(开放的最短路径优先):这种路由协议弥补了RIP的一些缺陷,并能与RIP在同一网络中共存。OSPF在选择最优路径时使用了一种更灵活的算法。最优路径这个术语是指从一个节点到另一个节点效率最高的路径。在理想的网络环境中,两点间的最优路径就是直接连接两点的路径。如果要传输的数据量过大,或数据在传输过程中损耗过大,数据不能沿最直接的路径传输,路由器就要另外选择出一条还要通过其他路由器但效率最高的路径。这种方案就要求路由器带有更多的内存和功能更强大的中央处理器。这样,用户就不会感觉到占用的带宽降到了最低,而收敛时间却很短。OSPF是继RIP之后第二种使用得最多的协议。
(3)为IP、IPX和Apple Talk而设计的EIGRP (增强内部网关路由协议):此路由协议由Cisco公司在20 世纪80年代中期开发。它具有快速收敛时间和低网络开销。由于它比OSPF. EIGRP容易配置和需要较少的CPU,也支持多协议且限制路由器之间多余的网络流量。
(4)为IP、IPX和Apple Talk而设计的BGP(边界网关协议):BGP是为因特网主干网设计的一种路由协议。因特网的飞速发展对路由器需求的增长推动了对BGP这种最复杂的路由协议的开发工作。BGP的开发人员面对的不仅是它能够连接十万台路由器的美好前景,他们还要面对解决如何才能通过成千上万的因特网主干网合理有效地路由的问题。
参考:http://book.51cto.com/art/200706/49428.htm