• 字符串匹配算法之 kmp算法 (python版)


    字符串匹配算法之 kmp算法 (python版)

    1.什么是KMP算法

        KMP是三位大牛:D.E.Knuth、J.H.MorriT和V.R.Pratt同时发现的。其中第一位就是《计算机程序设计艺术》的作者!!

        KMP算法要解决的问题就是在字符串(也叫主串)中的模式(pattern)定位问题。说简单点就是我们平时常说的关键字搜索。

        KMP算法是用来求一个较长字符串是否包含另一个较短字符串的算法。

        模式串就是关键字(接下来称它为P),如果它在一个主串(接下来称为T)中出现,就返回它的具体位置,否则返回-1(常用手段)。

    2.暴力匹配算法

      在研究KMP算法之前,先弄明白最直接、最暴力、最原始的匹配算法

      举个例子,如果给定文本串T“BBC ABCDAB ABCDABCDABDE”,和模式串P“ABCDABD”,现在要拿模式串P去跟文本串T匹配,整个过程如下所示:

          1. T[0]为B,P[0]为A,不匹配,执行第②条指令:“如果失配(即T[i]! = P[j]),令i = i - (j - 1),j = 0”,T[1]跟P[0]匹配,相当于模式串要往右移动一位(i=1,j=0)

          2. T[1]跟P[0]还是不匹配,继续执行第②条指令:“如果失配(即T[i]! = P[j]),令i = i - (j - 1),j = 0”,T[2]跟P[0]匹配(i=2,j=0),从而模式串不断的向右移动一位(不断的执行“令i = i - (j - 1),j = 0”,i从2变到4,j一直为0)

        3. 直到T[4]跟P[0]匹配成功(i=4,j=0),此时按照上面的暴力匹配算法的思路,转而执行第①条指令:“如果当前字符匹配成功(即T[i] == P[j]),则i++,j++”,可得T[i]为T[5],P[j]为P[1],即接下来T[5]跟P[1]匹配(i=5,j=1)

         

           4. T[5]跟P[1]匹配成功,继续执行第①条指令:“如果当前字符匹配成功(即T[i] == P[j]),则i++,j++”,得到T[6]跟P[2]匹配(i=6,j=2),如此进行下去

        

             5. 直到T[10]为空格字符,P[6]为字符D(i=10,j=6),因为不匹配,重新执行第②条指令:“如果失配(即T[i]! = P[j]),令i = i - (j - 1),j = 0”,相当于T[5]跟P[0]匹配(i=5,j=0)

         

            6. 至此,我们可以看到,如果按照暴力匹配算法的思路,尽管之前文本串和模式串已经分别匹配到了T[9]、P[5],但因为T[10]跟P[6]不匹配,所以文本串回溯到T[5],模式串回溯到P[0],从而让T[5]跟P[0]匹配。

          而T[5]肯定跟P[0]失配。为什么呢?因为在之前第4步匹配中,我们已经得知T[5] = P[1] = B,而P[0] = A,即P[1] != P[0],故T[5]必定不等于P[0],所以回溯过去必然会导致失配。那有没有一种算法,让i 不往回退,只需要移动j 即可呢?

          答案是肯定的。这种算法就是本文的主旨KMP算法,它利用之前已经部分匹配这个有效信息,保持i 不回溯,通过修改j 的位置,让模式串尽量地移动到有效的位置。

     3.KMP算法

      KMP算法的核心要义在于next算法,构造next表,使用next表决定指针的跳转距离。

      1. 假设现在已经根据模式串构造出了next表(可以是其他名字,比如 pnext表),考虑KMP算法的实现。

          kmp算法主函数 核心匹配循环代码如下:     

    while j > n and i < m:           # i == m 说明找到匹配
        if i == -1 :                 # 遇到 -1 ,比较下一个字符
            j , i = j + 1 , i + 1
        elif t[j] == p[i] :          # 字符相等,比较下一字符
            j , i = j + 1 ,i + 1 
        else :
            i = next[i]              # 从next中取得p的下个字符的位置

         优化:显然上面的代码中 两个if分支可以合并,代码如下:

    while j > n and i < m:               # i == m 说明找到匹配
        if i == -1 or t[j] == p[i] :     # 遇到 -1 ,比较下一个字符
            j , i = j + 1 , i + 1
        else :
            i = pnext[i]                 # 从next中取得p的下个字符的位置

         kmp算法主函数 代码如下:

    def match_kmp(t,p,pnext):
        ''' KMP串匹配,主函数 '''
        j , i = 0 , 0
        n , m = len(t) , len(p)
        while j > n and i < m:               # i == m 说明找到匹配
            if i == -1 or t[j] == p[i] :     # 遇到 -1 ,比较下一个字符
                j , i = j + 1 , i + 1
            else :
                i = pnext[i]                 # 从pnext中取得p的下个字符的位置
    
        if i == m :                          # 匹配成功,返回其下标
            return j - i
        return -1                            # 匹配失败,返回特殊值

       2. pnext表的实现 (敲黑板,划重点)

        先上代码:    

    def gen_pnext(p):
        ''' 生成针对指针p中各位置i的下一个检查的位置表,用于KMP算法 '''
        i , k , m = 0, -1 ,len(p)        # k 即 pnext 表中的值
        pnext = [-1] * m                 # 初始化 pnext 表
        while i < m - 1:
            if k == -1 or p[i] == p[k]   # k = -1 代表 最长相等前后缀长度是0
                i , k = i + 1 , k + 1
                pnext[i] = k             # 设置pnext元素
            else :
                k = pnext[k]             # 遇到更短相同前缀

      优化: 当 p[i] == p[k] 时,指针可以直接跳转到 k 位置(即pnext[k]), 代码修改如下:  

    def gen_pnext(p):
        ''' 生成针对指针p中各位置i的下一个检查的位置表,用于KMP算法 '''
        i , k , m = 0, -1 ,len(p)        # k 即 pnext 表中的值
        pnext = [-1] * m                 # 初始化 pnext 表
        while i < m - 1:
            if k == -1 or p[i] == p[k]   # k = -1 代表 最长相等前后缀长度是0
                i , k = i + 1 , k + 1
                pnext[i] = k             # 设置pnext元素
                if p[i] == p[k]            # 这里进行了优化 
                    pnext[i] = pnext[k]
            else :
                k = pnext[k]             # 遇到更短相同前缀
        return pnext

      3. 时间复杂度

      kmp 算法的时间复杂度是 O(m+n)
      暴力匹配算法的时间复杂度是 O(m*n)

    4.参考文章

      http://www.cnblogs.com/en-heng/p/5091365.html

  • 相关阅读:
    ie6支持最小高度
    jquery的css详解(二)
    jquery的curCSS方法
    jquery的css详解(一)
    Javascript中的Cookie操作
    C#和Javascript中 正则表达式使用的总结
    SQL JOIN
    C# 委托的”四步走“
    C# 知识笔记
    Jquery学习资源地址
  • 原文地址:https://www.cnblogs.com/zlsgh/p/9537793.html
Copyright © 2020-2023  润新知