• POJ 3264 Balanced Lineup


    http://poj.org/problem?id=3264

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    代码1(RMQ)

    #include <iostream>
    #include <stdio.h>
    #include <math.h>
    #include <algorithm>
    #include <cstdio>
    using namespace std;
    
    const int maxn = 5e4 + 10;
    int N, M;
    int a[maxn];
    int maxx[maxn][30], minn[maxn][30];
    
    void RMQ(int num) {
        for(int i = 1; i <= N; i ++) {
            maxx[i][0] = a[i];
            minn[i][0] = a[i];
        }
    
        for(int j = 1; j < 23; j ++) {
            for(int i = 1; i <= num; i ++) {
                if(i + (1 << j) - 1<= num) {
                    maxx[i][j] = max(maxx[i][j - 1], maxx[i + (1 << (j - 1))][j - 1]);
                    minn[i][j] = min(minn[i][j - 1], minn[i + (1 << (j - 1))][j - 1]);
                }
            }
        }
    }
    
    int query(int l, int r) {
        int k = (int)(log(r - l + 1) / log(2.0));
        int maxnum = max(maxx[l][k], maxx[r - (1 << k) + 1][k]);
        int minnum = min(minn[l][k], minn[r - (1 << k) + 1][k]);
        return maxnum - minnum;
    }
    
    int main() {
        scanf("%d%d", &N, &M);
        for(int i = 1; i <= N; i ++)
            scanf("%d", &a[i]);
    
        RMQ(N);
    
        while(M --) {
            int st, en;
            scanf("%d%d", &st, &en);
            int ans = query(st, en);
            printf("%d
    ", ans);
        }
        return 0;
    }
    View Code

    代码2(线段树)

    #include <iostream>
    #include <stdio.h>
    #include <cstdio>
    #include <algorithm>
    #include <string>
    using namespace std;
    
    const int inf = 1e8 + 10;
    const int maxn = 1e6 + 10;
    int N, M;
    int Min, Max;
    int a[maxn];
    
    struct Node{
        int l;
        int r;
        int maxx;
        int minn;
    }node[maxn];
    
    void Build(int i, int l, int r) {
        node[i].l = l;
        node[i].r = r;
        if(l == r) {
            node[i].maxx = node[i].minn = a[l];
            return ;
        }
        int mid = (l + r) / 2;
        Build(i * 2, l, mid);
        Build(i * 2 + 1, mid + 1, r);
        node[i].maxx = max(node[i * 2].maxx, node[i * 2 + 1].maxx);
        node[i].minn = min(node[i * 2].minn, node[i * 2 + 1].minn);
    }
    
    void query(int i, int l, int r) {
        if(node[i].maxx <= Max && node[i].minn >= Min) return;
        if(node[i].l == l && node[i].r == r) {
            Max = max(Max, node[i].maxx);
            Min = min(Min, node[i].minn);
            return ;
        }
        int mid = (node[i].l + node[i].r) / 2;
        if(r <= mid) query(i * 2, l, r);
        else if(l > mid) query(i * 2 + 1, l, r);
        else {
            query(i * 2, l, mid);
            query(i * 2 + 1, mid + 1, r);
        }
    }
    
    int main() {
        while(~scanf("%d%d", &N, &M)) {
            for(int i = 1; i <= N; i ++)
                scanf("%d", &a[i]);
            Build(1, 1, N);
            while(M --) {
                int st, en;
                scanf("%d%d", &st, &en);
                Min = inf, Max = -inf;
                query(1, st, en);
                printf("%d
    ", Max - Min);
            }
        }
        return 0;
    }
    View Code

      线段树求区间最大值和最小值的差 会建线段树了 有 1.. 开心 突然想起来今天的 Leetcode 还没写 

     

  • 相关阅读:
    《JavaScript高级程序设计》扩展关于动态原型
    “三角边”的那点事儿
    请允许我说:数学是如此美丽!
    球面模型分解及仿flash标签云
    关于Javascript模块化和命名空间管理
    我所了解的关于JavaScript定义类和对象的几种方式
    正因为我们是前端,所以代码更需要优雅
    “作弊”还是创意?伪3D
    mybatis常用jdbcType数据类型以及对应的JavaType
    mdx之计算成员和命名集
  • 原文地址:https://www.cnblogs.com/zlrrrr/p/10684337.html
Copyright © 2020-2023  润新知