• PAT 甲级 1044 Shopping in Mars


    https://pintia.cn/problem-sets/994805342720868352/problems/994805439202443264

    Shopping in Mars is quite a different experience. The Mars people pay by chained diamonds. Each diamond has a value (in Mars dollars M$). When making the payment, the chain can be cut at any position for only once and some of the diamonds are taken off the chain one by one. Once a diamond is off the chain, it cannot be taken back. For example, if we have a chain of 8 diamonds with values M$3, 2, 1, 5, 4, 6, 8, 7, and we must pay M$15. We may have 3 options:

    1. Cut the chain between 4 and 6, and take off the diamonds from the position 1 to 5 (with values 3+2+1+5+4=15).
    2. Cut before 5 or after 6, and take off the diamonds from the position 4 to 6 (with values 5+4+6=15).
    3. Cut before 8, and take off the diamonds from the position 7 to 8 (with values 8+7=15).

    Now given the chain of diamond values and the amount that a customer has to pay, you are supposed to list all the paying options for the customer.

    If it is impossible to pay the exact amount, you must suggest solutions with minimum lost.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains 2 numbers: N (≤), the total number of diamonds on the chain, and M (≤), the amount that the customer has to pay. Then the next line contains N positive numbers D1​​DN​​ (Di​​103​​ for all ,) which are the values of the diamonds. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print i-j in a line for each pair of i ≤ j such that Di + ... + Dj = M. Note that if there are more than one solution, all the solutions must be printed in increasing order of i.

    If there is no solution, output i-j for pairs of i ≤ j such that Di + ... + Dj > with (Di + ... + Dj −) minimized. Again all the solutions must be printed in increasing order of i.

    It is guaranteed that the total value of diamonds is sufficient to pay the given amount.

    Sample Input 1:

    16 15
    3 2 1 5 4 6 8 7 16 10 15 11 9 12 14 13
    

    Sample Output 1:

    1-5
    4-6
    7-8
    11-11
    

    Sample Input 2:

    5 13
    2 4 5 7 9
    

    Sample Output 2:

    2-4
    4-5

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    const int maxn = 1e5 + 10;
    int N, M, K;
    int minn = 99999;
    int num[maxn], sum[maxn];
    
    vector<int> BinarySearch(int key) {
        vector<int> rec;
        for(int i = 1; i <= N; i ++) {
            int L = i, R = N, mid;
            while(L <= R) {
                mid = (L + R) / 2;
                if(sum[mid] - sum[i - 1] == key) {
                    rec.push_back(i);
                    rec.push_back(mid);
                    break;
                }
                else if(sum[mid] - sum[i - 1] > key)
                    R = mid - 1;
                else L = mid + 1;
            }
        }
        return rec;
    }
    
    int main() {
        memset(sum, 0, sizeof(sum));
        scanf("%d%d", &N, &M);
        for(int i = 1; i <= N; i ++) {
            scanf("%d", &num[i]);
            sum[i] = sum[i - 1] + num[i];
        }
    
        vector<int> ans = BinarySearch(M);
        if(ans.size()) {
            for(int i = 0; i < ans.size(); i ++) {
                if(i % 2 == 0) printf("%d-", ans[i]);
                else printf("%d
    ", ans[i]);
            }
        } else {
            for(int i = 1; i <= N; i ++) {
                int l = i, r = N, midd;
                while(l <= r) {
                    midd = (l + r) / 2;
                    int temp = sum[midd] - sum[i - 1];
                    if(temp - M < 0) l = midd + 1;
                    else if(temp - M > 0)
                        r = midd - 1;
    
                    if(temp > M) minn = min(minn, temp);
                }
            }
    
            vector<int> res = BinarySearch(minn);
            for(int i = 0; i < res.size(); i ++) {
                if(i % 2 == 0) printf("%d-", res[i]);
                else printf("%d
    ", res[i]);
            }
        }
        return 0;
    }
    

      求前缀和 然后二分

  • 相关阅读:
    包的初识与使用
    时间 随机 模块
    规范化开发
    解析Javascript事件冒泡机制
    Java垃圾回收机制
    Java 垃圾收集机制
    javac 编译与 JIT 编译
    JAVA对文件类型的校验
    多态性实现机制——静态分派与动态分派
    类加载机制
  • 原文地址:https://www.cnblogs.com/zlrrrr/p/10422013.html
Copyright © 2020-2023  润新知