A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. A maximal clique is a clique that cannot be extended by including one more adjacent vertex. (Quoted from https://en.wikipedia.org/wiki/Clique_(graph_theory))
Now it is your job to judge if a given subset of vertices can form a maximal clique.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers Nv (≤ 200), the number of vertices in the graph, and Ne, the number of undirected edges. Then Ne lines follow, each gives a pair of vertices of an edge. The vertices are numbered from 1 to Nv.
After the graph, there is another positive integer M (≤ 100). Then M lines of query follow, each first gives a positive number K (≤ Nv), then followed by a sequence of K distinct vertices. All the numbers in a line are separated by a space.
Output Specification:
For each of the M queries, print in a line Yes
if the given subset of vertices can form a maximal clique; or if it is a clique but not a maximal clique, print Not Maximal
; or if it is not a clique at all, print Not a Clique
.
Sample Input:
8 10
5 6
7 8
6 4
3 6
4 5
2 3
8 2
2 7
5 3
3 4
6
4 5 4 3 6
3 2 8 7
2 2 3
1 1
3 4 3 6
3 3 2 1
Sample Output:
Yes Yes Yes Yes Not Maximal Not a Clique
判断最大团问题,可以用个标记数组差不多就能解决了。
1 #include <bits/stdc++.h> 2 using namespace std; 3 int n,m,k,p; 4 vector<int> v[250]; 5 int an[205], vis[205],val[205]; 6 int main(){ 7 cin >> n >> m; 8 int x,y; 9 for(int i = 0 ; i < m; ++i){ 10 cin >> x >> y; 11 v[x].push_back(y); 12 v[y].push_back(x); 13 } 14 cin >> k; 15 while(k--){ 16 cin >> p; 17 memset(vis,0,sizeof(vis)); 18 for(int i = 0; i < p; i++){ 19 cin >> an[i]; 20 for(int j = 0; j < v[an[i]].size(); ++j){ 21 vis[v[an[i]][j]]++; 22 } 23 } 24 bool flag = true; 25 for(int i = 0; i < p; i++){ 26 if(vis[an[i]] != p-1){ 27 flag = false; 28 break; 29 } 30 } 31 if(!flag){ 32 printf("Not a Clique "); 33 continue; 34 } 35 bool prime = true; 36 for(int i = 1; i <= n; i++){ 37 if(vis[i] == p){ 38 prime = false; 39 break; 40 } 41 } 42 if(prime) 43 printf("Yes "); 44 else 45 printf("Not Maximal "); 46 } 47 return 0; 48 }